Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Oktay, Yavuz" seçeneğine göre listele

Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Autosomal recessive variants in TUBGCP2 alter the ?-tubulin ring complex leading to neurodevelopmental disease
    (Cell Press, 2021) Gungor, Serdal; Oktay, Yavuz; Hiz, Semra; Aranguren-Ibanez, Alvaro; Kalafatcilar, Ipek; Yaramis, Ahmet; Karaca, Ezgi
    Microtubules help building the cytoskeleton of neurons and other cells. Several components of the gamma-tubulin (gamma-tubulin) complex have been previously reported in human neurodevelopmental diseases. We describe two siblings from a consanguineous Turkish familywith dysmorphic features, developmental delay, brain malformation, and epilepsy carrying a homozygous mutation (p.Glu311Lys) in TUBGCP2 encoding the gamma-tubulin complex 2 (GCP2) protein. This variant is predicted to disrupt the electrostatic interaction of GCP2 with GCP3. In primary fibroblasts carrying the variant, we observed a faint delocalization of gamma-tubulin during the cell cycle but normal GCP2 protein levels. Through mass spectrometry, we observed dysregulation of multiple proteins involved in the assembly and organization of the cytoskeleton and the extracellular matrix, controlling cellular adhesion and of proteins crucial for neuronal homeostasis including axon guidance. In summary, our functional and proteomic studies link TUBGCP2 and the gamma-tubulin complex to the development of the central nervous system in humans.
  • Küçük Resim Yok
    Öğe
    Bi-allelic variants in the ESAM tight-junction gene cause a neurodevelopmental disorder associated with fetal intracranial hemorrhage
    (Cell Press, 2023) Lecca, Mauro; Pehlivan, Davut; Suner, Damia Heine; Weiss, Karin; Coste, Thibault; Zweier, Markus; Oktay, Yavuz
    The blood-brain barrier (BBB) is an essential gatekeeper for the central nervous system and incidence of neurodevelopmental disorders (NDDs) is higher in infants with a history of intracerebral hemorrhage (ICH). We discovered a rare disease trait in thirteen individuals, including four fetuses, from eight unrelated families associated with homozygous loss-of-function variant alleles of ESAM which encodes an endothelial cell adhesion molecule. The c.115del (p.Arg39Glyfs*33) variant, identified in six individuals from four independent families of Southeastern Anatolia, severely impaired the in vitro tubulogenic process of endothelial colony-forming cells, recapitulating previous ev-idence in null mice, and caused lack of ESAM expression in the capillary endothelial cells of damaged brain. Affected individuals with bi-allelic ESAM variants showed profound global developmental delay/unspecified intellectual disability, epilepsy, absent or severely delayed speech, varying degrees of spasticity, ventriculomegaly, and ICH/cerebral calcifications, the latter being also observed in the fetuses. Phenotypic traits observed in individuals with bi-allelic ESAM variants overlap very closely with other known conditions characterized by endothelial dysfunc-tion due to mutation of genes encoding tight junction molecules. Our findings emphasize the role of brain endothelial dysfunction in NDDs and contribute to the expansion of an emerging group of diseases that we propose to rename as tightjunctionopathies.
  • Küçük Resim Yok
    Öğe
    Characterization and Engineered U1 snRNA Rescue of Splicing Variants in a Turkish Neurodevelopmental Disease Cohort
    (Wiley-Hindawi, 2024) Sonmezler, Ece; Stuani, Cristiana; Hiz Kurul, Semra; Gungor, Serdal; Buratti, Emanuele; Oktay, Yavuz
    Although they are rare in the population, rare neurodevelopmental disorders (RNDDs) constitute a significant portion of all rare diseases. While advancements in sequencing technologies led to improvements in diagnosing and managing rare neurodevelopmental diseases, accurate pathogenicity classification of the identified variants is still challenging. Sequence variants altering pre-mRNA splicing make up a significant part of pathogenic variants. Despite advances in the in silico prediction tools, noncanonical splice site variants are one of the groups of variants that pose a challenge in their clinical interpretation. In this study, we analyzed the effects of seven splicing variants we had previously proposed as disease-causing and demonstrated that all but one of the seven variants had a strong or moderate effect on splicing, as assessed by a minigene assay. Next, applying U1 snRNAs engineered for different splicing variants in the corresponding genes and expressed with minigene plasmids in HeLa cells provided a partial correction in four of the studied genes to varying degrees. Findings from our study highlight the importance of in vitro minigene-based assays for the reclassification of putative splice-altering variants of uncertain significance and the therapeutic potential of modified U1 snRNAs in RNDDs.
  • Küçük Resim Yok
    Öğe
    Confirmation of TACO1 as a Leigh Syndrome Disease Gene in Two Additional Families
    (Ios Press, 2020) Oktay, Yavuz; Gungor, Serdal; Zeltner, Lena; Wiethoff, Sarah; Schoels, Ludger; Sonmezler, Ece; Yilmaz, Elmasnur
    Background: In 2009, we identified TACO1 as a novel mitochondrial disease gene in a single family, however no second family has been described to confirm the role of TACO1 in mitochondrial disease. Objective: In this report, we describe two independent consanguineous families carrying pathogenic variants in TACO1, confirming the phenotype. Methods: Detailed clinical investigations and whole exome sequencing with haplotype analysis have been performed in several members of the two reported families. Results: Clinical phenotype of the patients confirms the originally reported phenotype of a childhood-onset progressive cerebellar and pyramidal syndrome with optic atrophy and learning difficulties. Brain MRI showed periventricular white matter lesions with multiple cystic defects, suggesting leukoencephalopathy in both patients. One patient carried the previously described homozygous TACO1 variant (p.His158ProfsTer8) and haplotype analysis suggested that this variant is a rare founder mutation. The second patient from another family carried a homozygous novel frame shift variant (p.Cys85PhefsTer15). Conclusions: The identification of two Turkish families with similar characteristic clinical presentation and an additional homozygous nonsense mutation confirms that TACO1 is a human mitochondrial disease gene. Although most patients with this clinical presentation undergo next generation sequencing analysis, screening for selected founder mutations in the Turkish population based on the precise clinical presentation may reduce time and cost of finding the genetic diagnosis even in the era of massively parallel sequencing.
  • Küçük Resim Yok
    Öğe
    High diagnostic rate of trio exome sequencing in consanguineous families with neurogenetic diseases
    (Oxford Univ Press, 2022) Kurul, Semra Hiz; Oktay, Yavuz; Topf, Ana; Szabo, Nora Zs; Gungor, Serdal; Yaramis, Ahmet; Sonmezler, Ece
    Consanguineous marriages have a prevalence rate of 24% in Turkey. These carry an increased risk of autosomal recessive genetic conditions, leading to severe disability or premature death, with a significant health and economic burden. A definitive molecular diagnosis could not be achieved in these children previously, as infrastructures and access to sophisticated diagnostic options were limited. We studied the cause of neurogenetic disease in 246 children from 190 consanguineous families recruited in three Turkish hospitals between 2016 and 2020. All patients underwent deep phenotyping and trio whole exome sequencing, and data were integrated in advanced international bioinformatics platforms. We detected causative variants in 119 known disease genes in 72% of families. Due to overlapping phenotypes 52% of the confirmed genetic diagnoses would have been missed on targeted diagnostic gene panels. Likely pathogenic variants in 27 novel genes in 14% of the families increased the diagnostic yield to 86%. Eighty-two per cent of causative variants (141/172) were homozygous, 11 of which were detected in genes previously only associated with autosomal dominant inheritance. Eight families carried two pathogenic variants in different disease genes. De novo (9.3%), X-linked recessive (5.2%) and compound heterozygous (3.5%) variants were less frequent compared to non-consanguineous populations. This cohort provided a unique opportunity to better understand the genetic characteristics of neurogenetic diseases in a consanguineous population. Contrary to what may be expected, causative variants were often not on the longest run of homozygosity and the diagnostic yield was lower in families with the highest degree of consanguinity, due to the high number of homozygous variants in these patients. Pathway analysis highlighted that protein synthesis/degradation defects and metabolic diseases are the most common pathways underlying paediatric neurogenetic disease. In our cohort 164 families (86%) received a diagnosis, enabling prevention of transmission and targeted treatments in 24 patients (10%). We generated an important body of genomic data with lasting impacts on the health and wellbeing of consanguineous families and economic benefit for the healthcare system in Turkey and elsewhere. We demonstrate that an untargeted next generation sequencing approach is far superior to a more targeted gene panel approach, and can be performed without specialized bioinformatics knowledge by clinicians using established pipelines in populations with high rates of consanguinity.
  • Küçük Resim Yok
    Öğe
    Severe neurodevelopmental disease caused by a homozygous TLK2 variant
    (Nature Publishing Group, 2020) Topf, Ana; Oktay, Yavuz; Balaraju, Sunitha; Yilmaz, Elmasnur; Sonmezler, Ece; Yis, Uluc; Laurie, Steven
    A distinct neurodevelopmental phenotype characterised mainly by mild motor and language delay and facial dysmorphism, caused by heterozygous de novo or dominant variants in the TLK2 gene has recently been described. All cases reported carried either truncating variants located throughout the gene, or missense changes principally located at the C-terminal end of the protein mostly resulting in haploinsufficiency of TLK2. Through whole exome sequencing, we identified a homozygous missense variant in TLK2 in a patient showing more severe symptoms than those previously described, including cerebellar vermis hypoplasia and West syndrome. Both parents are heterozygous for the variant and clinically unaffected highlighting that recessive variants in TLK2 can also be disease causing and may act through a different pathomechanism.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim