Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Orhanbulucu, Firat" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Detection of amyotrophic lateral sclerosis disease by variational mode decomposition and convolution neural network methods from event-related potential signals
    (Tubitak Scientific & Technological Research Council Turkey, 2021) Latifoglu, Fatma; Orhanbulucu, Firat; Ileri, Ramis
    Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is a neurological disease that occurs as a result of damage to the nerves in the brain and restriction of muscle movements. Electroencephalography (EEG) is the most common method used in brain imaging to study neurological disorders. Diagnosis of neurological disorders such as ALS, Parkinson's, attention deficit hyperactivity disorder is important in biomedical studies. In recent years, deep learning (DL) models have been started to be applied in the literature for the diagnosis of these diseases. In this study, event-related potentials (ERPs) were obtained from EEG signals obtained as a result of visual stimuli from ALS patients and healthy controls. As a new method, variational mode decomposition (VMD) is applied to the produced ERP signals and the signals are decomposed into subbands. In addition, empirical mode decomposition (EMD), one of the popular decomposition methods in the literature, was also analyzed, and ERP signals were divided into subbands and compared with the VMD method. Subband signals were classified in two stages with the one-dimensional convolutional neural network (1D CNN) model, which is one of the DL techniques proposed in the study. Accuracy, sensitivity, specificity, and F1-Score measurements were obtained using 5-and 10-fold cross-validation to evaluate classifier performance. In the first stage of classification, only VMD and EMD subband signals were used and 92.95% classification accuracy was obtained by the VMD method. In the second stage, VMD, EMD subband signals, and original ERP signals were all classified together with the VMD+ERP model achieving the maximum classification accuracy rate of 90.42%. It is thought that the results of the study will contribute to the diagnosis of similar neurological disorders such as ALS, attention studies based on visual stimuli, and the development of brain-computer interface (BCI) systems using the method applied to the proposed ERP signals.
  • Küçük Resim Yok
    Öğe
    Detection of amyotrophic lateral sclerosis disease from event-related potentials using variational mode decomposition method
    (Taylor & Francis Ltd, 2022) Orhanbulucu, Firat; Latifoglu, Fatma
    This study, it was aimed to contribute to the literature on Amyotrophic lateral sclerosis (ALS) diagnosis and Brain-Computer Interface (BCI) technologies by analyzing the electroencephalography (EEG) signals obtained as a result of visual stimuli and attention from ALS patients and healthy controls. It was observed that the success rate significantly increased both in the occipital and central regions in all classifiers, especially in the entropy features. The most successful classification was obtained with the Naive Bayes (NB) classifier using the Morphological Features (MF) + Variational Mode Decomposition (VMD) -Entropy features at 88.89% in the occipital region and 94.44% in the central region.
  • Küçük Resim Yok
    Öğe
    A New Hybrid Approach Based on Time Frequency Images and Deep Learning Methods for Diagnosis of Migraine Disease and Investigation of Stimulus Effect
    (Mdpi, 2023) Orhanbulucu, Firat; Latifoglu, Fatma; Baydemir, Recep
    Migraine is a neurological disorder that is associated with severe headaches and seriously affects the lives of patients. Diagnosing Migraine Disease (MD) can be laborious and time-consuming for specialists. For this reason, systems that can assist specialists in the early diagnosis of MD are important. Although migraine is one of the most common neurological diseases, there are very few studies on the diagnosis of MD, especially electroencephalogram (EEG)-and deep learning (DL)-based studies. For this reason, in this study, a new system has been proposed for the early diagnosis of EEG- and DL-based MD. In the proposed study, EEG signals obtained from the resting state (R), visual stimulus (V), and auditory stimulus (A) from 18 migraine patients and 21 healthy control (HC) groups were used. By applying continuous wavelet transform (CWT) and short-time Fourier transform (STFT) methods to these EEG signals, scalogram-spectrogram images were obtained in the time-frequency (T-F) plane. Then, these images were applied as inputs in three different convolutional neural networks (CNN) architectures (AlexNet, ResNet50, SqueezeNet) that proposed deep convolutional neural network (DCNN) models and classification was performed. The results of the classification process were evaluated, taking into account accuracy (acc.), sensitivity (sens.), specificity (spec.), and performance criteria, and the performances of the preferred methods and models in this study were compared. In this way, the situation, method, and model that showed the most successful performance for the early diagnosis of MD were determined. Although the classification results are close to each other, the resting state, CWT method, and AlexNet classifier showed the most successful performance (Acc: 99.74%, Sens: 99.9%, Spec: 99.52%). We think that the results obtained in this study are promising for the early diagnosis of MD and can be of help to experts.
  • Küçük Resim Yok
    Öğe
    A novel approach for Parkinson's disease detection using Vold-Kalman order filtering and machine learning algorithms
    (Springer London Ltd, 2024) Latifoglu, Fatma; Penekli, Sultan; Orhanbulucu, Firat; Chowdhury, Muhammad E. H.
    Parkinson's disease (PD) is the second most common neurological disorder caused by damage to dopaminergic neurons. Therefore, it is important to develop systems for early and automatic diagnosis of PD. For this purpose, a study that will contribute to the development of systems for the automatic diagnosis of PD is presented. The Electroencephalography (EEG) signals were decomposed into sub-bands using adaptive decomposition methods, such as empirical mode decomposition, variational mode decomposition, and Vold-Kalman order filtering (VKF). Various features were extracted from the sub-band decomposed signals, and the significant ones were determined by Chi-squared test. These important features were applied as input to support vector machine (SVM), fitch neural network (FNN), k-nearest neighbours (KNN), and decision trees (DT), machine learning (ML) models and classification was performed. We analysed the performance of ML models by obtaining accuracy, sensitivity, specificity, positive predictive value, negative predictive values, F1-score, false-positive rate, kappa statistics, and area under the curve. The classification process was performed for two cases: PD ON-HC and PD OFF-HC groups. The most successful method in this study was the VKF method, which was applied for the first time in this field with the approach specified for both cases. In both instances, the SVM algorithm was employed as the ML model, with classifier performance criterion values close to 100%. The results obtained in this study seem to be successful compared to the results of recent research on the diagnosis of PD.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim