Yazar "Ozgur, Aykut" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Anticancer activities of manganese-based photoactivatable CO-releasing complexes (PhotoCORMs) with benzimidazole derivative ligands(Springer, 2017) Ustun, Elvan; Ozgur, Aykut; Coskun, Kubra A.; Dusunceli, Serpil Demir; Ozdemir, Ismail; Tutar, YusufCarbon monoxide is an important signaling molecule which is produced by heme oxygenase-1. CO shows antiproliferative activity against cancer cells; hence, activation of HO-1 is a significant inhibition strategy against tumor formation and survival of cancer cells. In this work, manganese-based CO-releasing molecules (CORMs) were designed and synthesized to inhibit breast cancer cell proliferation. Human invasive ductal breast cancer cells (MCF-7) were treated with the synthesized CORMs to investigate the effect of the complexes on breast cancer survival under UV light. In vitro experiments indicated that the complexes inhibited breast cancer cell proliferation, and further, the antiproliferative effects were increased under UV light. Thus, these novel CORMs may provide a drug template for the treatment of invasive ductal breast cancer.Öğe CO-releasing properties and anticancer activities of manganese complexes with imidazole/benzimidazole ligands(Taylor & Francis Ltd, 2016) Ustun, Elvan; Ozgur, Aykut; Coskun, Kubra A.; Demir, Serpil; Ozdemir, Ismail; Tutar, YusufCarbon monoxide (CO) is an important signaling molecule which plays significant roles in the pathogenesis of cancer. CO is produced by enzymatic degradation of heme in mammals. Heme oxygenase 1 (HO-1) catalyzes the breakdown of heme into CO, ferrous iron, and biliverdin. CO induces HO-1 and inhibits cell proliferation. Cancer cells exposed to several stress factors (hypoxia, reactive oxygen species, cis-platin, and oxidative stress), and HO-1 displays cytoprotective role against oxidative stress and inhibits apoptosis, metastases, angiogenesis, and cell proliferation processes. Therefore, metal containing CO-releasing molecules (CORMs) have been designed as an effective cancer treatment strategy. CORMs are responsible for releasing controlled amounts of CO to cells and tissues. Thus, we synthesized [Mn(CO)(3)(bpy)L]X manganese containing CORMs [bpy=2,2-bipyridine, X=hexafluorophosphate (PF6), trifluoromethanesulfonate (OTf), L=imidazole, methylimidazole, benzimidazole, N-benzylbenzimidazole, N-(4-chlorobenzyl)benzimidazole] to release CO in human invasive ductal breast (MCF-7) cell line. In vitro experiments indicated that the compounds inhibited cell proliferation and exhibited cytotoxic effect on breast cancer cells. Moreover, side groups of the compounds enhanced the anticancer effects in MCF-7 cell line. These manganese containing CORMs gave promising results and may be used as a drug template for effective treatment of invasive ductal breast carcinoma. [GRAPHICS] .Öğe Genomic analysis to screen potential genes and mutations in children with non-syndromic early onset severe obesity: a multicentre study in Turkey(Springer, 2022) Akinci, Aysehan; Kara, Altan; Ozgur, Aykut; Turkkahraman, Doga; Aksu, SonerBackground Obesity is a complex genetic-based pediatric disorder which triggers life-threatening conditions. Therefore, the understanding the molecular mechanisms of obesity has been a significant approach in medicine. Computational methods allow rapid and comprehensive pathway analysis, which is important for generation of diagnosis and treatment of obesity. Methods and results Aims of our study are to comprehensively investigate genetic characteristics of obesity in children with non-syndromic, early-onset (< 7 years), and severe obesity (BMI-SDS > 3) through computational approaches. First, the mutational analyses of 41 of obesity-related genes in 126 children with non-syndromic early-onset severe obesity and 76 healthy non-obese controls were performed using the next generation sequencing (NGS) technique, and the NGS data analyzed by using bioinformatics methods. Then, the relationship between pathogenic variants and anthropometric/biochemical parameters was further evaluated. Obtained results demonstrated that the 15 genes (ADIPOQ, ADRB2, ADRB3, IRS1, LEPR, NPY, POMC, PPARG, PPARGC1A, PPARGC1B, PTPN1, SLC22A1, SLC2A4, SREBF1 and UCP1) which directly related to obesity found linked together via biological pathways and/or functions. Among these genes, IRS1, PPARGC1A, and SLC2A4 stand out as the most central ones. Furthermore, 12 of non-synonymous pathogenic variants, including six novels, were detected on ADIPOQ (G90S and D242G), ADRB2 (V87M), PPARGC1A (E680G, A477T, and R656H), UCP1 (Q44R), and IRS1 (R302Q, R301H, R301C, H250P, and H250N) genes. Conclusion We propose that 12 of non-synonymous pathogenic variations detected on ADIPOQ, ADRB2, PPARGC1A, UCP1, and IRS1 genes might have a cumulative effect on the development and progression of obesity.