Yazar "Ozmen, Nesrin" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Evaluation on reducing toxicity of fluoxastrobin with doped TiO2 nanoparticles(Tubitak Scientific & Technological Research Council Turkey, 2021) Gungordu, Abbas; Ozmen, Nesrin; Erdemoglu, Sema; Turhan, Duygu Ozhan; Asilturk, Meltem; Akgeyik, Emrah; Ozmen, MuratIn this study, toxic effects caused by the degradation of fluoxastrobin, which is a commonly used fungicide where newly synthesized manganese or sulfur-doped TiO2 nanoparticles exist were evaluated. The characterization study of nanoparticles was performed by scanning an electron microscopy (SEM), X-ray diffractometry, Brunau-Emmet-Teller analysis, X-ray fluorescence spectroscopy, and UV-Vis (ultraviolet-visible) reflectance spectra. Subsequently, the photocatalytic performance of nanoparticles, their toxicity, and the photocatalytic degradation products of fluoxastrobin with the same nanoparticles were tested during the two development stages of Xenopus laevis. The LC(50)s of fluoxastrobin were determined on test organisms, and a 5 mg L-1 fluoxastrobin was selected to evaluate the photocatalytic degradation capacity due to toxicity studies. The sublethal effects of the nanoparticles and the degradation product of fluoxastrobin were assessed with embryonic malformations and biochemical marker responses. Sulfur-doped TiO2 was found to be more effective compared to manganese-doped TiO2 for the degradation of fluoxastrobin, photocatalytically. On the other hand, even if the tested nanoparticles were not lethal, they caused effects such as growth retardation and changes in biochemical responses on organisms.Öğe Investigation of the effects of metal oxide nanoparticle mixtures on Danio rerio and Xenopus laevis embryos(Taylor & Francis Ltd, 2023) Ozmen, Nesrin; Turhan, Duygu Ozhan; Gungordu, Abbas; Yilmaz, Hatice Caglar; Ozmen, MuratIn this study, the toxic effects of single TiO2, ZnO and Fe2O3 nanoparticles (NPs) and their binary and ternary combinations on the embryonic development of Xenopus laevis and Danio rerio were evaluated. It was aimed to determine the median lethal concentrations, growth retardation and developmental malformation effects and the effects of mixed nanoparticle exposure to selected enzyme biomarkers resulting from the exposure of embryos to NPs. The results showed that ZnO NPs, which are the most toxic according to the highest lethality level, cause developmental delay and malformations. The Fe2O3 and TiO2 NPs caused growth retardation only in D. rerio embryos. It was determined that double and triple combinations of NPs did not cause significant lethality in both species. Biochemical markers showed that mixed NPs could lead to greater toxicity compared to single exposures. The results also revealed that TiO2 or Fe2O3 NPs caused an increase in toxicity when co-existing with ZnO NP due to additive effects. Overall, the results showed that D. rerio was more susceptible to NP exposure in terms of growth and mortality than X. laevis. However, studies that are more comprehensive are needed to better understand the toxicity mechanism of metal oxide NP mixtures.Öğe Photocatalytic degradation of azo dye using core@shell nano-TiO2 particles to reduce toxicity(Springer Heidelberg, 2018) Ozmen, Nesrin; Erdemoglu, Sema; Gungordu, Abbas; Asilturk, Meltem; Turhan, Duygu Ozhan; Akgeyik, Emrah; Harper, Stacey L.Clean and safe water is fundamental for human and environmental health. Traditional remediation of textile dye-polluted water with chemical, physical, and biological processes has many disadvantages. Due to this, nano-engineered materials are drawing more attention to this area. However, the widespread use of nano-particles for this purpose may lead to photocatalytic degradation of xenobiotics, while increasing the risk of nano-particle-induced ecotoxicity. Therefore, we comparatively evaluated the toxicity of novel synthesized core@shell TiO2 and SiO2 nano-particles to embryonic stages of Danio rerio and Xenopus laevis. The ability of photocatalytic destruction of the synthesized nano-particles was tested using toxic azo dye, disperse red 65, and the effects of reducing the toxicity were evaluated. The reflux process was used to synthesize catalysts in the study. The samples were characterized by scanning electron microscopy, X-ray fluorescence spectroscopy, X-ray diffractometry, BET surface area, and UV-vis-diffuse reflectance spectra. It was determined that the synthesized nano-particles had no significant toxic effect on D. rerio and X. laevis embryos. On the other hand, photocatalytic degradation of the dye significantly reduced lethal effects on embryonic stages of the organisms. Therefore, we suggest that specific nano-particles may be useful for water remediation to prevent human health and environmental impact. However, further risk assessment should be conducted for the ecotoxicological risks of nano-particles spilled in aquatic environments and the relationship of photocatalytic interaction with nano-particles and xenobiotics.Öğe Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO2(Elsevier Science Bv, 2015) Ozmen, Murat; Gungordu, Abbas; Erdemoglu, Sema; Ozmen, Nesrin; Asilturk, MeltemThe toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO2. Undoped and Mn-doped TiO2 nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV-vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO2 was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO2 nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO2 increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2-4 h of degradation. However, biochemical assays showed that both Mn-doped TiO2 and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn-doped TiO2 should be considered due to nanomaterial applications and for spilled nanoparticles in an aquatic ecosystem. Also, the risk of nanoparticles should be considered using indicator reference biochemical markers to verify the environmental health impacts. (C) 2015 Elsevier B.V. All rights reserved.Öğe VALORIZATION AND BIODECOLORIZATION OF DYE ADSORBED ON LIGNOCELLULOSICS USING WHITE ROT FUNGI(North Carolina State Univ Dept Wood & Paper Sci, 2012) Ozmen, Nesrin; Yesilada, OzferBiosorption of dyes by lignocelluloses may be an effective method for removing dyes from textile effluents. However, the resulting dye-adsorbed lignocellulosic materials may constitute another pollution problem. An integrated method can solve this problem. Here, various lignocelluloses were tested for their Astrazon Black and Astrazon Blue dyes removal activities. The dye adsorbed after 30 min contact time was 90% (45 mg/L), 70% (35 mg/L), and 98% (49 mg/L) for wheat bran, pine cone, and cotton stalk, respectively. These dye-adsorbed lignocellulosic wastes then were used as solid substrates to produce laccase enzyme with Funalia trogii and Trametes versicolor under solid state fermentation (SSF). Among the lignocellulosic substrates, the dye-adsorbed wheat bran served as the best solid substrate for laccase production under SSF. Therefore, it was also tested as a solid source for laccase production under submerged fermentation. During solid state fermentation, these two fungi were able to highly decolorize these dyes. While F. trogii decolorized 80% of Astrazon Black dye adsorbed onto wheat bran, T. versicolor decolorized 86%. On the other hand, the decolorization values for Astrazon Blue dye were 69% and 84%, respectively.