Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ozturk, Dursun" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Fabric Defect Detection Methods for Circular Knitting Machines
    (Ieee, 2015) Hanbay, Kazim; Talu, Muhammed Fatih; Ozguven, Omer Faruk; Ozturk, Dursun
    In this paper, an online fabric defect detection system that can detect fabric defects which may occur during the fabric product in knitting machines is introduced. This system mainly includes three steps: 1) Construction of a defected/defect-free fabric database; 2) Obtaining and classification of the feature vectors; 3) Online working on embedded system. This study only contains information about the first two stages. In the first stage, 3242 'defected' and '5923' defect-free images were acquired by using a conveyor system which has line scan camera and linear light. In the second stage, filtering, feature extraction (wavelet transform, co-occurrence matrix and CoHOG) and classification (YSA) processes were carried out. As a result, obtaining the feature vectors through wavelet transform has reduced computation cost by 53% and also has successfully provided the classification of the defects by 90%.
  • Küçük Resim Yok
    Öğe
    A novel hybrid attention gate based on vision transformer for the detection of surface defects
    (Springer London Ltd, 2024) Uzen, Hueseyin; Turkoglu, Muammer; Ozturk, Dursun; Hanbay, Davut
    Many advanced models have been proposed for automatic surface defect inspection. Although CNN-based methods have achieved superior performance among these models, it is limited to extracting global semantic details due to the locality of the convolution operation. In addition, global semantic details can achieve high success for detecting surface defects. Recently, inspired by the success of Transformer, which has powerful abilities to model global semantic details with global self-attention mechanisms, some researchers have started to apply Transformer-based methods in many computer-vision challenges. However, as many researchers notice, transformers lose spatial details while extracting semantic features. To alleviate these problems, in this paper, a transformer-based Hybrid Attention Gate (HAG) model is proposed to extract both global semantic features and spatial features. The HAG model consists of Transformer (Trans), channel Squeeze-spatial Excitation (sSE), and merge process. The Trans model extracts global semantic features and the sSE extracts spatial features. The merge process which consists of different versions such as concat, add, max, and mul allows these two different models to be combined effectively. Finally, four versions based on HAG-Feature Fusion Network (HAG-FFN) were developed using the proposed HAG model for the detection of surface defects. The four different datasets were used to test the performance of the proposed HAG-FFN versions. In the experimental studies, the proposed model produced 83.83%, 79.34%, 76.53%, and 81.78% mIoU scores for MT, MVTec-Texture, DAGM, and AITEX datasets. These results show that the proposed HAGmax-FFN model provided better performance than the state-of-the-art models.
  • Küçük Resim Yok
    Öğe
    Real-Time Detection of Knitting Fabric Defects Using Shearlet Transform
    (Ege Univ, 2019) Hanbay, Kazim; Talu, Muhammed Fatih; Ozguven, Omer Faruk; Ozturk, Dursun
    This paper proposes a vision-based fabric inspection system for the circular knitting machine. Firstly, a comprehensive fabric database called Fabric Defect Detection Database (FDDD) are constructed. To extract significant features of fabric images, shearlet transform is used. Means and variances are calculated from all subbands and combined into a high-dimensional feature vector. The proposed system is evaluated on a circular knitting machine in a textile factory. The real-time performance analysis is only carried out by inspecting single jersey knitted fabric. Our proposed system achieves the highest accuracy of 94.0% in the detection of single jersey knitting fabric defects.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim