Yazar "Raza, Ali" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Assessment of Hematological Predictors via Explainable Artificial Intelligence in the Prediction of Acute Myocardial Infarction(Ieee-Inst Electrical Electronics Engineers Inc, 2023) Yilmaz, Rustem; Yagin, Fatma Hilal; Raza, Ali; Colak, Cemil; Akinci, Tahir CetinAcute myocardial infarction (AMI) is the main cause of death in developed and developing countries. AMI is a serious medical problem that necessitates hospitalization and sometimes results in death. Patients hospitalized in the emergency department (ED) should therefore receive an immediate diagnosis and treatment. Many studies have been conducted on the prognosis of AMI with hemogram parameters. However, no study has investigated potential hemogram parameters for the diagnosis of AMI using an interpretable artificial intelligence-based clinical approach. The purpose of this research is to implement the principles of explainable artificial intelligence (XAI) in the analysis of hematological predictors for AMI. In this retrospective analysis, 477 (48.6%) patients with AMI and 504 (51.4%) healthy individuals were enrolled and assessed in predicting AMI. Of the patients with AMI, 182 (38%) had an ST-segment elevation MI (STEMI), and 295 (62%) had a non-ST-segment elevation MI (NSTEMI). Demographic and hematological information of the patients was analyzed to determine AMI. The XAI approach combined with machine learning approaches (Extreme Gradient Boosting, XGB; Adaptive Boosting, AB; Light Gradient Boosting Machine, LGBM) was applied for the estimation of AMI and distinguishing subgroups of AMI (STEMI and NSTEMI). The SHAP approach was used to explain the predictions intuitively. After selecting the 10 most important hematological parameters for AMI, the LGBM model achieved 83% and 74% accuracy for prediction of AMI, and distinguishing subgroups of AMI (STEMI and NSTEMI), respectively. SHAP results showed that neutrophil (NEU), white blood cell (WBC), platelet width of distribution (PDW), and basophil (BA) were the most important for AMI prediction. Mean corpuscular volume (MCV), BA, monocytes (MO), and lymphocytes (LY) were the most important hematological parameters that distinguish STEMI from NSTEMI. The proposed model serves as a valuable tool for physicians, facilitating the diagnosis, treatment, and follow-up of patients with AMI and distinguishing subgroups of AMI (STEMI and NSTEMI). Analyzing readily accessible hemogram parameters empowers medical professionals to make informed decisions and provide enhanced care to a wide range of individuals.Öğe An Explainable Artificial Intelligence Model Proposed for the Prediction of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and the Identification of Distinctive Metabolites(Mdpi, 2023) Yagin, Fatma Hilal; Alkhateeb, Abedalrhman; Raza, Ali; Samee, Nagwan Abdel; Mahmoud, Noha F.; Colak, Cemil; Yagin, BurakBackground: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and debilitating illness with a significant global prevalence, affecting over 65 million individuals. It affects various systems, including the immune, neurological, gastrointestinal, and circulatory systems. Studies have shown abnormalities in immune cell types, increased inflammatory cytokines, and brain abnormalities. Further research is needed to identify consistent biomarkers and develop targeted therapies. This study uses explainable artificial intelligence and machine learning techniques to identify discriminative metabolites for ME/CFS. Material and Methods: The model investigates a metabolomics dataset of CFS patients and healthy controls, including 26 healthy controls and 26 ME/CFS patients aged 22-72. The dataset encapsulated 768 metabolites into nine metabolic super-pathways: amino acids, carbohydrates, cofactors, vitamins, energy, lipids, nucleotides, peptides, and xenobiotics. Random forest methods together with other classifiers were applied to the data to classify individuals as ME/CFS patients and healthy individuals. The classification learning algorithms' performance in the validation step was evaluated using a variety of methods, including the traditional hold-out validation method, as well as the more modern cross-validation and bootstrap methods. Explainable artificial intelligence approaches were applied to clinically explain the optimum model's prediction decisions. Results: The metabolomics of C-glycosyltryptophan, oleoylcholine, cortisone, and 3-hydroxydecanoate were determined to be crucial for ME/CFS diagnosis. The random forest model outperformed the other classifiers in ME/CFS prediction using the 1000-iteration bootstrapping method, achieving 98% accuracy, precision, recall, F1 score, 0.01 Brier score, and 99% AUC. According to the obtained results, the bootstrap validation approach demonstrated the highest classification outcomes. Conclusion: The proposed model accurately classifies ME/CFS patients based on the selected biomarker candidate metabolites. It offers a clear interpretation of risk estimation for ME/CFS, aiding physicians in comprehending the significance of key metabolomic features within the model.