Yazar "Sahin, Mahmut" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Intracardiac thrombosis after liver transplantation: Can be detected before surgery?(Medknow Publications & Media Pvt Ltd, 2017) Ozkan, Ahmet Selim; Kacmaz, Osman; Akbas, Sedat; Sahin, Mahmut; Durmus, Mahmut[Abstract Not Available]Öğe MTU-COVNet: A hybrid methodology for diagnosing the COVID-19 pneumonia with optimized features from multi-net(Elsevier Science Inc, 2022) Kavuran, Gurkan; In, Erdal; Geckil, Aysegul Altintop; Sahin, Mahmut; Berber, Nurcan KiriciPurpose: The aim of this study was to establish and evaluate a fully automatic deep learning system for the diagnosis of COVID-19 using thoracic computed tomography (CT). Materials and methods: In this retrospective study, a novel hybrid model (MTU-COVNet) was developed to extract visual features from volumetric thoracic CT scans for the detection of COVID-19. The collected dataset consisted of 3210 CT scans from 953 patients. Of the total 3210 scans in the final dataset, 1327 (41%) were obtained from the COVID-19 group, 929 (29%) from the CAP group, and 954 (30%) from the Normal CT group. Diagnostic performance was assessed with the area under the receiver operating characteristic (ROC) curve, sensitivity, and specificity. Results: The proposed approach with the optimized features from concatenated layers reached an overall accuracy of 97.7% for the CT-MTU dataset. The rest of the total performance metrics, such as; specificity, sensitivity, precision, F1 score, and Matthew Correlation Coefficient were 98.8%, 97.6%, 97.8%, 97.7%, and 96.5%, respectively. This model showed high diagnostic performance in detecting COVID-19 pneumonia (specificity: 98.0% and sensitivity: 98.2%) and CAP (specificity: 99.1% and sensitivity: 97.1%). The areas under the ROC curves for COVID-19 and CAP were 0.997 and 0.996, respectively. Conclusion: A deep learning-based AI system built on the CT imaging can detect COVID-19 pneumonia with high diagnostic efficiency and distinguish it from CAP and normal CT. AI applications can have beneficial effects in the fight against COVID-19.Öğe Using artificial intelligence to improve the diagnostic efficiency of pulmonologists in differentiating COVID-19 pneumonia from community-acquired pneumonia(Wiley, 2022) In, Erdal; Geckil, Aysegul A.; Kavuran, Gurkan; Sahin, Mahmut; Berber, Nurcan K.; Kuluozturk, MutluCoronavirus disease 2019 (COVID-19) has quickly turned into a global health problem. Computed tomography (CT) findings of COVID-19 pneumonia and community-acquired pneumonia (CAP) may be similar. Artificial intelligence (AI) is a popular topic among medical imaging techniques and has caused significant developments in diagnostic techniques. This retrospective study aims to analyze the contribution of AI to the diagnostic performance of pulmonologists in distinguishing COVID-19 pneumonia from CAP using CT scans. A deep learning-based AI model was created to be utilized in the detection of COVID-19, which extracted visual data from volumetric CT scans. The final data set covered a total of 2496 scans (887 patients), which included 1428 (57.2%) from the COVID-19 group and 1068 (42.8%) from the CAP group. CT slices were classified into training, validation, and test datasets in an 8:1:1. The independent test data set was analyzed by comparing the performance of four pulmonologists in differentiating COVID-19 pneumonia both with and without the help of the AI. The accuracy, sensitivity, and specificity values of the proposed AI model for determining COVID-19 in the independent test data set were 93.2%, 85.8%, and 99.3%, respectively, with the area under the receiver operating characteristic curve of 0.984. With the assistance of the AI, the pulmonologists accomplished a higher mean accuracy (88.9% vs. 79.9%, p < 0.001), sensitivity (79.1% vs. 70%, p < 0.001), and specificity (96.5% vs. 87.5%, p < 0.001). AI support significantly increases the diagnostic efficiency of pulmonologists in the diagnosis of COVID-19 via CT. Studies in the future should focus on real-time applications of AI to fight the COVID-19 infection.