Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Sahin, Melin" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Fractional controller design for suppressing smart beam vibrations
    (Emerald Group Publishing Ltd, 2012) Onat, Cem; Sahin, Melin; Yaman, Yavuz
    Purpose - The purpose of this paper is to detail the design of a fractional controller which was developed for the suppression of the flexural vibrations of the first mode of a smart beam. Design/methodology/approach - During the design of the fractional controller, in addition to the classical control parameters such as the controller gain and the bandwidth; the order of the derivative effect was also included as another design parameter. The controller was then designed by considering the closed loop frequency responses of different fractional orders of Continued Fraction Expansion (CFE) method. Findings - The first, second, third and fourth order approximations of CFE method were studied for the performance analysis of the controller. It was determined that the increase in the order resulted in better vibration level suppression at the resonance. The robustness analysis of the developed controllers was also conducted. Practical implications - The experimentally obtained free and forced vibration results indicated that the increase in the order of the approximations yielded better performance around the first flexural resonance region of the smart beam and proved to yield better performance than the classical integer order controllers. Originality/value - Evaluation of the performance of a developed fractional controller was realized by using different approach orders of the CFE method for the suppression of the flexural vibrations of a smart beam.
  • Küçük Resim Yok
    Öğe
    Vibration control of a smart piezo beam via gain scheduling H? controller based on LPV model
    (Techno-Press, 2021) Turan, Abdullah; Sahin, Melin; Onat, Cem
    In this study, a gain scheduling H-infinity controller based on Linear Parameter Varying (LPV) model was designed and applied to suppress the first out of plane bending vibration of a variable parameter smart beam equipped with Lead-Zirconium-Titanium (PZT) patches. This paper also introduces a novel LPV modelling technique which defalcates the zeros of the system. The controller design was carried out in three successive steps. In the first step, the variable parameter model of the beam with an added mass at its free end can rotate through a micro servo motor was experimentally obtained. In the second step, an original LPV model including the variable parameter model was obtained. Finally, H-infinity controller with gain scheduling was designed on LPV model. The obtained controller was then used both for simulations and experimental verifications. It was shown that in response to parameter changes in the system, the proposed controller is capable of suppressing the beam bending vibrations by also exhibiting a robust performance. In practice, the proposed LPV controller design strategy can be transacted for vibration control of aircraft wings, the parameters of which vary according to various load conditions changing in time and therefore deeply affects the passive characteristics of the system of interest.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim