Yazar "Sahin A." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Drug Delivery with Targeted Nanoparticles: In Vitro and in Vivo Evaluation Methods(Taylor and Francis, 2021) Çapan Y.; Sahin A.; Tonbul H.Nanotechnology has the potential to change every part of our lives. Today, nanotechnology-based products are used in many areas, and one of the most important areas is drug delivery. Nanoparticulate drug delivery systems not only provide controlled delivery of drugs and improved drug solubility but also improve drug efficiency and reduce side effects via targeting mechanisms. However, compared with conventional drug delivery systems, few nanoparticle-based products are on the market and almost all are nontargeted or only passively targeted systems. In addition, obtaining targeted nanoparticle systems is quite complex and requires several evaluation mechanisms. This book discusses the production, characterization, regulation, and currently marketed targeted nanoparticle systems in a broad framework. It provides an overview of targeted nanoparticles’ (i) in vitro characterization, such as particle size, stability, ligand density, and type; (ii) in vivo behavior for different targeting areas, such as tumor, brain, and vagina; and (iii) current advances in this field, including clinical trials and regulation processes. © 2022 Jenny Stanford Publishing Pte. Ltd.Öğe High intensity focused ultrasound pressure field characterization(Institute of Electrical and Electronics Engineers Inc., 2020) Karaboce B.; Nur S.; Sahin A.One of the innovative methods in cancer treatment is to use high intensity focused ultrasound (HIFU) technology. HIFU transducers create a very high acoustic pressure (tens of MPa) area at the focal point of the tissue inside the body. The HIFU transducer pressure area should be characterized for effective and safe use in applications in cancer treatment. A system was established in TÜBİTAK Ultrasound Laboratory for the characterization of acoustic pressure field produced by HIFU systems. The system is controlled by a LabVIEW-based data processing program. A signal generator card was used to drive the HIFU converter and an oscilloscope card was used to process the signal received from the hydrophone. HIFU pressure area scanning measurements were performed at pressure levels of approximately 1 MPa -3 MPa. The theoretical model, based on the Khokhlov-Zabolotskaya-Kuznetsov equation, was not initially analyzed for periodic wave clusters with a homogeneous amplitude distribution. Numerical solutions have been shown to be compatible with experimental data. The choice of the PZT type to manufacture the HIFU transducer was modeled theoretically and its effect on the field structure was also emphasized. © 2020 IEEE.