Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Selcuk, Burhan" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Connected Cubic Network Graph
    (Elsevier - Division Reed Elsevier India Pvt Ltd, 2017) Selcuk, Burhan; Karci, Ali
    Hypercube is a popular interconnection network. Due to the popularity of hypercube, more researchers pay a great effort to develop the different variants of hypercube. In this paper, we have proposed a variant of hypercube which is called as Connected Cubic Network Graphs, and have investigated the Hamilton-like properties of Connected Cubic Network Graphs (CCNG). Firstly, we defined CCNG and showed the characteristic analyses of CCNG. Then, we showed that the CCNG has the properties of Hamilton graph, and can be labeled using a Gray coding based recursive algorithm. Finally, we gave the comparison results, a routing algorithm and a bitonic sort algorithm for CCNG. In case of sparsity and cost, CCNG is better than Hypercube. (C) 2017 Karabuk University. Publishing services by Elsevier B.V.
  • Küçük Resim Yok
    Öğe
    A new hypercube variant: Fractal Cubic Network Graph
    (Elsevier - Division Reed Elsevier India Pvt Ltd, 2015) Karci, Ali; Selcuk, Burhan
    Hypercube is a popular and more attractive interconnection networks. The attractive properties of hypercube caused the derivation of more variants of hypercube. In this paper, we have proposed two variants of hypercube which was called as Fractal Cubic Network Graphs, and we have investigated the Hamiltonian-like properties of Fractal Cubic Network Graphs FCNG(r)(n). Firstly, Fractal Cubic Network Graphs FCNG(r)(n) are defined by a fractal structure. Further, we show the construction and characteristics analyses of FCNG(r)(n) where r = 1 or r = 2. Therefore, FCNG(r)(n) is a Hamiltonian graph which is obtained by using Gray Code for r = 2 and FCNG(1)(n) is not a Hamiltonian Graph. Furthermore, we have obtained a recursive algorithm which is used to label the nodes of FCNG(2)(n). Finally, we get routing algorithms on FCNG(2)(n) by utilizing routing algorithms on the hypercubes. (C) 2015 Karabuk University. Production and hosting by Elsevier B.V.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim