Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Simsek O.I." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A Computational Intelligent Analysis Scheme for Optimal Engine Behavior by Using Artificial Neural Network Learning Models and Harris Hawk Optimization
    (Institute of Electrical and Electronics Engineers Inc., 2021) Simsek O.I.; Alagoz B.B.
    Application of computational intelligence methods in data analysis and optimization problems can allow feasible and optimal solutions of complicated engineering problems. This study demonstrates an intelligent analysis scheme for determination of optimal operating condition of an internal combustion engine. For this purpose, an artificial neural network learning model is used to represent engine behavior based on engine data, and a metaheuristic optimization method is implemented to figure out optimal operating states of the engine according to the neural network learning model. This data analysis scheme is used for adjustment of optimal engine speed and fuel rate parameters to provide a maximum torque under Nitrous oxide emission constraint. Harris hawks optimization method is implemented to solve the proposed optimization problem. The solution of this optimization problem addresses eco-friendly enhancement of vehicle performance. Results indicate that this computational intelligent analysis scheme can find optimal operating regimes of an engine. © 2021 IEEE.
  • Küçük Resim Yok
    Öğe
    Daily Forecasting of Demand Orders with Optimal Architecture Artificial Neural Network Learning Models
    (Institute of Electrical and Electronics Engineers Inc., 2021) Simsek O.I.; Alagoz B.B.
    In recent years, with the increase in volume of buying orders, demand forecast based on the order data is important for improvement of production, distribution and selling services. For this reason, the predictability of orders will increase efficiency in many areas by timely delivering orders, increasing earnings, and customer satisfaction in trading. This article aims to estimate total amount of daily orders by using an optimal structured artificial neural network learning model. To optimize rectangular architecture of artificial neural network model, a metaheuristic optimization, which determines the number of hidden layers and number of neurons, is used. In the study, training of neural networks was carried out with the Levenberg-Marquardt backpropagation algorithm for daily orders collected for 60 days. During this training, the network's layer and neuron number were optimized with a gray wolf optimization algorithm. Results indicate that optimal architecture neural network can better estimate total daily demand orders. © 2021 IEEE.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim