Yazar "Syed, Ali Z." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Convolutional Neural Network Performance for Sella Turcica Segmentation and Classification Using CBCT Images(Mdpi, 2022) Duman, Suayip Burak; Syed, Ali Z.; Ozen, Duygu Celik; Bayrakdar, Ibrahim Sevki; Salehi, Hassan S.; Abdelkarim, Ahmed; Celik, OzerThe present study aims to validate the diagnostic performance and evaluate the reliability of an artificial intelligence system based on the convolutional neural network method for the morphological classification of sella turcica in CBCT (cone-beam computed tomography) images. In this retrospective study, sella segmentation and classification models (CranioCatch, Eskisehir, Turkiye) were applied to sagittal slices of CBCT images, using PyTorch supported by U-Net and TensorFlow 1, and we implemented the GoogleNet Inception V3 algorithm. The AI models achieved successful results for sella turcica segmentation of CBCT images based on the deep learning models. The sensitivity, precision, and F-measure values were 1.0, 1.0, and 1.0, respectively, for segmentation of sella turcica in sagittal slices of CBCT images. The sensitivity, precision, accuracy, and F1-score were 1.0, 0.95, 0.98, and 0.84, respectively, for sella-turcica-flattened classification; 0.95, 0.83, 0.92, and 0.88, respectively, for sella-turcica-oval classification; 0.75, 0.94, 0.90, and 0.83, respectively, for sella-turcica-round classification. It is predicted that detecting anatomical landmarks with orthodontic importance, such as the sella point, with artificial intelligence algorithms will save time for orthodontists and facilitate diagnosis.Öğe Nasopharynx evaluation in children of unilateral cleft palate patients and normal with cone beam computed tomography(Sage Publications Ltd, 2023) Temiz, Mustafa; Duman, Suayip Burak; Abdelkarim, Ahmed Z.; Bayrakdar, Ibrahim Sevki; Syed, Ali Z.; Eser, Gozde; Celik Ozen, DuyguObjective:This study aimed to examine the morphological characteristics of the nasopharynx in unilateral Cleft lip/palate (CL/P) children and non-cleft children using cone beam computed tomography (CBCT). Methods:A retrospective study consisted of 54 patients, of which 27 patients were unilateral CL/P, remaining 27 patients have no CL/P. Eustachian tubes orifice (ET), Rosenmuller fossa (RF) depth, presence of pharyngeal bursa (PB), the distance of posterior nasal spine (PNS)-pharynx posterior wall were quantitatively evaluated. Results:The main effect of the CL/P groups was found to be effective on RF depth-right (p < 0.001) and RF depth-left (p < 0.001). The interaction effect of gender and CL/P groups was not influential on measurements. The cleft-side main effect was found to be effective on RF depth-left (p < 0.001) and RF depth-right (p = 0002). There was no statistically significant relationship between CL/P groups and the presence of bursa pharyngea. Conclusions:Because it is the most common site of nasopharyngeal carcinoma (NPC), the anatomy of the nasopharynx should be well known in the early diagnosis of NPC.