Yazar "Taskin, Nur" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe BROMATE REMOVAL PREDICTION IN DRINKING WATER BY USING THE LEAST SQUARES SUPPORT VECTOR MACHINE (LS-SVM)(Yildiz Technical Univ, 2020) Karadurnius, Erdal; Goz, Eda; Taskin, Nur; Yuceer, MehmetThe main objective of this study was to develop Least Squares Support Vector Machine (LS-SVM) algorithm for prediction of bromate removal in drinking water. Adsorption method known as environmental-friendly and economical was used in the experimental part of this study to remove this harmful compound from drinking water. Technically (pure), HCl-, NaOH- and NH3-modified activated carbons were prepared as adsorbent. Experimental studies were carried out with synthetic samples in three different concentrations. To forecast bromate removal percentage particle size and amount of the activated carbon, height and diameter of the column, volumetric flowrate, and initial concentration were selected as the input variables Radial basis kernel function was selected as activation function in algorithm. Algorithm parameters that gamma and sigma(2) values set as 415 and 3.956 respectively. To evaluate model performance some performance indices were calculated. Correlation coefficient (R), mean absolute percentage error (MAPE%) and root mean square error (RMSE) value for the training and testing phase R:0.996, MAPE%: 2.59 RMSE: 2.14 and R:0.994, MAPE%: 3.21 RMSE: 2.51 respectively. These results obtained from this study were compared with the ANN model previously developed with the same input data. As a result, LS-SVM has better performance than ANN.Öğe Prediction of Bromate Removal in Drinking Water Using Artificial Neural Networks(Taylor & Francis Inc, 2019) Karadurmus, Erdal; Taskin, Nur; Goz, Eda; Yuceer, MehmetIn treatment of natural water resources, bromide transforms into carcinogenic bromate, especially during the ozonation process. Adsorption was used in the experimental part of this study to remove this harmful compound from drinking water. For this purpose, technically, HCl-, NaOH-, and NH3-modified activated carbons were used. Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analyses were carried out within the characterization study. Moreover, the effects of diameters and heights of adsorption columns, flowrate, and particle size of adsorbent were investigated on the removal amounts of bromate. Optimum conditions were obtained from the experiments, and regional/real samples were collected and analyzed. After the experiments, an artificial neural network (ANN) was used to predict bromate removal percentage by using the observed data. Within this context, a feed-forward back-propagation ANN was chosen in this study. Additionally, the transfer function was selected as tangent sigmoid and 3 neurons were used in the hidden layer. Particle size and amount of the activated carbon, height and diameter of the column, volumetric flowrate, and initial concentration were selected as the input variables. Bromate removal percentage was selected as the output. It was found that the model an R value of 0.988, RMSE value of 3.47 and mean absolute percentage error (MAPE) of 5.19% in the test phase.