Yazar "Tektemur, Nalan Kaya" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effects of irisin and exercise on adropin and betatrophin in a new metabolic syndrome model(Taylor & Francis Ltd, 2024) Aydin, Suna; Kilinc, Faruk; Ugur, Kader; Aydin, Mustafa Ata; Yalcin, Mehmet Hanifi; Kuloglu, Tuncay; Tektemur, Nalan KayaMetabolic syndrome (MetS) is a prevalent public health problem. Uric acid (UA) is increased by MetS. We investigated whether administration of UA and 10% fructose (F) would accelerate MetS formation and we also determined the effects of irisin and exercise. We used seven groups of rats. Group 1 (control); group 2 (sham); group 3 (10% F); group 4 (1% UA); group 5 (2% UA); group 6 (10% F + 1% UA); and Group 7, (10% F + 2% UA). After induction of MetS (groups 3 -7), Group 3 was divided into three subgroups: 3A, no further treatment; 3B, irisin treatment; 3C, irisin treatment + exercise. Group 4, 1% UA, which was divided into three subgroups: 4A, no further treatment; 4B, irisin treatment; 4C, Irisin treatment + exercise. Group 5, 2% UA, which was divided into three subgroups: 5A, no further treatment; 5B, irisin treatment; 5C, irisin treatment + exercise. Group 6, 10% F + 1% UA, which was divided into three subgroups: 6A, no further treatment; 6B, irisin treatment; 6C, irisin treatment + exercise. Group 7, 10% F + 2% UA, which was divided into three subgroups: 7A, no further treatment; 7B, irisin treatment; 7C, irisin treatment + exercise., Irisin was administered 10 ng/kg irisin intraperitoneally on Monday, Wednesday, Friday, Sunday each week for 1 month. The exercise animals (in addition to irisin treatment) also were run on a treadmill for 45 min on Monday, Wednesday, Friday, Sunday each week for 1 month. The rats were sacrificed and samples of liver, heart, kidney, pancreas, skeletal muscles and blood were obtained. The amounts of adropin (ADR) and betatrophin in the tissue supernatant and blood were measured using an ELISA method. Immunohistochemistry was used to detect ADR and betatrophin expression in situ in tissue samples. The duration of these experiments varied from 3 and 10 weeks. The order of development of MetS was: group 7, 3 weeks; group 6, 4 weeks; group 5, 6 weeks; group 4, 7 weeks; group 3, 10 weeks. Kidney, liver, heart, pancreas and skeletal muscle tissues are sources of adropin and betatrophin. In these tissues and in the circulation, adropin was decreased significantly, while betatrophin was increased significantly due to MetS; irisin + exercise reversed this situation. We found that the best method for creating a MetS model was F + UA2 supplementation. Our method is rapid and simple. Irisin + exercise was best for preventing MetS.Öğe Modulation of Neuronal Damage in DRG by Asprosin in a High-Glucose Environment and Its Impact on miRNA181-a Expression in Diabetic DRG(Springer, 2024) Adam, Muhammed; Ozcan, Sibel; Dalkilic, Semih; Tektemur, Nalan Kaya; Tekin, Suat; Bilgin, Batuhan; Hekim, Munevver GizemAsprosin, a hormone secreted from adipose tissue, has been implicated in the modulation of cell viability. Current studies suggest that neurological impairments are increased in individuals with obesity-linked diabetes, likely due to the presence of excess adipose tissue, but the precise molecular mechanism behind this association remains poorly understood. In this study, our hypothesis that asprosin has the potential to mitigate neuronal damage in a high glucose (HG) environment while also regulating the expression of microRNA (miRNA)-181a, which is involved in critical biological processes such as cellular survival, apoptosis, and autophagy. To investigate this, dorsal root ganglion (DRG) neurons were exposed to asprosin in a HG (45 mmol/L) environment for 24 hours, with a focus on the role of the protein kinase A (PKA) pathway. Expression of miRNA-181a was measured by using real-time polymerase chain reaction (RT-PCR) in diabetic DRG. Our findings revealed a decline in cell viability and an upregulation of apoptosis under HG conditions. However, pretreatment with asprosin in sensory neurons effectively improved cell viability and reduced apoptosis by activating the PKA pathway. Furthermore, we observed that asprosin modulated the expression of miRNA-181a in diabetic DRG. Our study demonstrates that asprosin has the potential to protect DRG neurons from HG-induced damage while influencing miRNA-181a expression in diabetic DRG. These findings provide valuable insights for the development of clinical interventions targeting neurotoxicity in diabetes, with asprosin emerging as a promising therapeutic target for managing neurological complications in affected individuals.