Yazar "Tezcan, Burcu" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Acetylphenyl-substituted imidazolium salts: synthesis, characterization, in silico studies and inhibitory properties against some metabolic enzymes(Springer, 2023) Demirci, Ozlem; Tezcan, Burcu; Demir, Yeliz; Taskin-Tok, Tugba; Gok, Yetkin; Aktas, Aydin; Guzel, BilgehanHerein, we present how to synthesize thirteen new 1-(4-acetylphenyl)-3-alkylimidazolium salts by reacting 4-(1-H-imidazol-1-yl)acetophenone with a variety of benzyl halides that contain either electron-donating or electron-withdrawing groups. The structures of the new imidazolium salts were conformed using different spectroscopic methods (H-1 NMR, C-13 NMR, F-19 NMR, and FTIR) and elemental analysis techniques. Furthermore, these compounds' the carbonic anhydrase (hCAs) and acetylcholinesterase (AChE) enzyme inhibition activities were investigated. They showed a highly potent inhibition effect toward AChE and hCAs with K-i values in the range of 8.30 & PLUSMN; 1.71 to 120.77 & PLUSMN; 8.61 nM for AChE, 16.97 & PLUSMN; 2.04 to 84.45 & PLUSMN; 13.78 nM for hCA I, and 14.09 & PLUSMN; 2.99 to 69.33 & PLUSMN; 17.35 nM for hCA II, respectively. Most of the synthesized imidazolium salts appeared to be more potent than the standard inhibitor of tacrine (TAC) against AChE and Acetazolamide (AZA) against CA. In the meantime, to prospect for potential synthesized imidazolium salt inhibitor(s) against AChE and hCAs, molecular docking and an ADMET-based approach were exerted.Öğe Benzimidazolium salts bearing the trifluoromethyl group as organofluorine compounds: Synthesis, characterization, crystal structure, in silico study, and inhibitory profiles against acetylcholinesterase and ?-glycosidase(Wiley, 2022) Tezcan, Burcu; Gok, Yetkin; Sevincek, Resul; Taslimi, Parham; Taskin-Tok, Tugba; Aktas, Aydin; Guzel, BilgehanHere, we report the synthesis, characterization, and biological activities of a series of benzimidazolium salts bearing the trifluoromethylbenzyl group. All benzimidazolium salts were characterized by using nuclear magnetic resonance (NMR) (H-1 NMR and C-13 NMR), Fourier transform-infrared spectroscopy, and elemental analysis techniques. The crystal structures of some of these compounds were obtained by the single-crystal X-ray diffraction method. Furthermore, the acetylcholinesterase (AChE) and alpha-glycosidase (alpha-Gly) enzyme inhibition activities of these compounds were investigated. The obtained results revealed that 2e, with K-i value of 1.36 +/- 0.34 mu M against AChE and 3d with K-i value of 91.37 +/- 10.38 mu M against alpha-Gly, were the most potent compounds against both assigned enzymes. It should be noted that most of the synthesized compounds were more potent than standard inhibitor tacrine (TAC) against AChE. In silico studies, we focused on compound 2e, 3d, 3e, and 3f as potent inhibitors of AChE and alpha-Gly, the compound 2e showed good binding energy (-10.23 kcal/mol), among the three selected compounds and positive control (-10.18, -10.08, and -7.37 kcal/mol for 3d, 3f, and TAC, respectively). Likewise, as a result of the same compounds against the alpha-Gly enzyme, the compound 3d had the highest binding affinity (-8.39 kcal/mol) between the four selected compounds and the positive control (-8.27, -8.10, -8.06, and -7.53 kcal/mol for 3f, 3e, 2e, and acarbose, respectively). From the absorption, distribution, metabolism, excretion, and toxicity analyses, it can be concluded that the compounds under consideration exhibited more drug-likeness properties in the prediction studies compared to positive controls.Öğe Benzimidazolium Salts Containing Trifluoromethoxybenzyl: Synthesis, Characterization, Crystal Structure, Molecular Docking Studies and Enzymes Inhibitory Properties(Wiley-V C H Verlag Gmbh, 2022) Hamide, Mahmut; Gok, Yetkin; Demir, Yeliz; Sevincek, Resul; Taskin-Tok, Tugba; Tezcan, Burcu; Aktas, AydinThe method for producing 4-trifluoromethoxybenzyl substituted benzimidazolium salts is described in this article. The method is based on the reaction of 4-trifluoromethoxybenzyl substituent alkylating agent with 1-alkylbenzimidazole. This method yielded 1-(4-trifluoromethoxybenzyl)-3-alkylbenzimidazolium bromide salts. These benzimidazolium salts were characterized by using H-1-NMR, C-13-NMR, FT-IR spectroscopy, and elemental analysis techniques. The crystal structure of 1f was enlightened by single crystal X-ray diffraction studies. Also, the enzyme inhibition effects of the synthesised compounds were investigated. They demonstrated highly potent inhibition effect on acetylcholinesterase (AChE) and carbonic anhydrases (hCAs) (K-i values are in the range of 7.24 +/- 0.99 to 39.12 +/- 5.66 nM, 5.57 +/- 0.96 to 43.07 +/- 11.76 nM, and 4.38 +/- 0.43 to 18.68 +/- 3.60 nM for AChE, hCA I, and hCA II, respectively). In molecular docking study, the interactions of active compounds showing activity against AChE and hCAs enzymes were examined. The most active compound 1f has -10.90 kcal/mol binding energy value against AChE enzyme, and the potential structure compound 1e, which has activity against hCA I and hCA II enzymes, was -7.51 and -8.93 kcal/mol, respectively.