Yazar "Yagmur, Nagihan" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Adaptive Gradient Descent Control of Stable, First Order, Time-delay Dynamic Systems According to Time-Varying FIR Filter Model Assumption(Ieee, 2019) Yagmur, Nagihan; Alagoz, Baris BaykantThis study investigates robust control performance of adaptive gradient descent control in case of parametric perturbation of first order stable LTI systems. The proposed adaptive gradient descent control method is a variant of direct gradient descent control. The study aims to implement an adaptive control scheme for modeling-free control of stable, first-order, time delay plant models. The method implements two gradient descent optimizers. The first one performs only for synthesis of control signal, and the second optimizer works for a short-time model prediction based on instant input-output relation of a plant. We use a time-varying finite impulse response (TV-FIR) form to approximate short-term input-output relations of a first order stable plant dynamics and this work is an extended version of adaptive gradient descent control schemes that were presented in [6] and [7]. Adaptation and control laws are derived for this FIR model premise according to gradient descent method. The robust control performance of the proposed control method is investigated according to simulation results and compared with performance of optimal PI controller designs.Öğe Comparision of Solutions of Numerical Gradient Descent Method and Continous Time Gradient Descent Dynamics and Lyapunov Stability(Ieee, 2019) Yagmur, Nagihan; Alagoz, Baris BaykantGradient descent dynamics is an optimization techniques that is widely used in machine learning applications. This technique updates model parameter in the direction of descending of learning error. In this study, Lyapunov stability of continuous time gradient descent dynamics is investigated and robust stability condition, which is needed for implementation of gradient descent dynamics in intelligent control system applications, is evaluated. In a illustrative example, for a De Jong's function type error function, solutions of continuous gradient descent dynamics and Euler method based numerical solutions are compared and stability concerns is discussed.Öğe Modeling of first order plus time delay system dynamics with adaptive IIR filters based on gradient descent methods and performance analyses for different time delay cases(Pamukkale Univ, 2024) Yagmur, Nagihan; Alagoz, Baris BaykantIn this study, the modeling of First Order Plus Time Delay (FOPTD) dynamics by using adaptive infinite impulse response (IIR) filter based on Gradient Descent (GD) method, which is frequently used in machine learning applications, has been investigated by the help of the inputoutput data in the time domain. The First Order Time Delay (FOPTD) dynamic system models are the most basic system model that is used in the modeling of control systems. In the study, the IIR filter coefficients are optimized online by using the GD method for convergence of the IIR filter response to the FOPTD dynamic system model response for the same input signal. The distance of the IIR filter output to the output of the FOPTD dynamic system for the same input is expressed by the instant square error function and, recursive GD solutions of this function are used to minimize output mismatches between FOPTD system model and the proposed adaptive IIR filter. Thus, the convergence of the IIR filter to the input-output dynamics of a FOPTD dynamic system is provided in the time domain by performing recursive filter coefficient solutions that are obtained by the GD method. An application of the adaptive IIR filter solutions in the online modeling of FOPTD systems was carried out in MATLAB-Simulink environment. In the developed simulation environment, the collected signals from the inputs and outputs of the FOPTD dynamic system were used to online optimize the IIR filter coefficients in the GD optimization block. In this simulation environment, the convergence performance of the IIR filter response for the time delay system dynamics of the FOPTD plant model is investigated for different time delay values.