Yazar "Yakin, Ahmet" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effect of different types of fuels tested in a gasoline engine on engine performance and emissions(Pergamon-Elsevier Science Ltd, 2021) Yakin, Ahmet; Behcet, RasimIn this study, three different fuels named G100 (pure gasoline), E20 (volume 20% ethanol and 80% gasoline blend) and ES20 (20% sodium borohydride added ethanol solution and 80% gasoline) were used to test in a gasoline engine. First of all, G100 fuel, E20 and ES20 blended fuels, respectively, were tested in a gasoline engine and the effects of fuels on engine performance and exhaust emissions were investigated experimentally. Experiments were carried out at full load and at five different engine speeds ranging from 1400 to 3000 rpm, and engine performance and exhaust emission values were determined for each test fuel. When the test results of the engine operated with E20 and ES20 blended fuels are compared with the test results of the engine operated with gasoline; engine torque of E20 blended fuel increased by 1.87% compared to pure gasoline, while engine torque of ES20 blended fuel decreased by 1.64%. However, the engine power of E20 and ES20 blended fuels decreased by 2.02% and 5.10%, respectively, compared to the power of pure gasoline engine, while their specific fuel consumption increased by 5.02% and 6.57%, respectively, compared to pure gasoline fueled engine. On the other hand, CO and HC emissions of the engine operated with E20 and ES20 blended fuels decreased compared to the pure gasoline engine, while CO2 and NOx emissions increased. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Öğe Evaluation of hydrogen-containing NaBH4 and oxygen-containing alcohols (CH3OH, C2H5OH) as fuel additives in a gasoline engine(Pergamon-Elsevier Science Ltd, 2022) Behcet, Rasim; Yakin, AhmetThe aim of this study is to obtain alternative fuels with hydrogen-containing (NaBH4) and oxygen-containing (ethanol, methanol) fuel additives and to test these fuels in a gasoline engine. For this purpose, each of the NaBH4 added ethanol and methanol solutions was added to pure gasoline at a volume of 10% and mixed fuels named SE10 and SM10 were obtained, respectively. The obtained SE10 and SM10 mixed fuels were tested in a spark ignition engine and the performance and emission effects of the fuels were compared with the pure gasoline fueled engine test data. When the test results of the mixture fuel engine were compared with the test results of the engine running with pure gasoline, the torque of the SE10 fuel engine decreased compared to the pure gasoline engine, while the torque of the SM10 blended engine increased. In addition, while the exhaust gas temperatures of both blended fuels decreased, their specific fuel consumption and thermal efficiency increased. On the other hand, adding NaBH4 doped ethanol and methanol solutions to pure gasoline resulted in better combustion, reductions in CO emissions of SE10 and SM10 blended fuels by 31.04% and 53.7%, but CO2 emissions increased by 11.20% and 19.51% respectively. In addition, NOx emissions of SE10 and SM10 blended fuels decreased by 15.17% and 8.73%, respectively. (C) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Öğe INVESTIGATION OF THE EFFECT OF DEAD-STATE TEMPERATURE ON THE PERFORMANCE OF BORON-ADDED FUELS AND DIFFERENT FUELS USED IN AN INTERNAL COMBUSTION ENGINE(Begell House Inc, 2024) Uckan, Irfan; Yakin, Ahmet; Behcet, RasimThis study aimed to investigate the exergy variations of five different fuels developed for internal combustion engines. Two of these fuels, i.e., boron-added fuels, were newly developed. In many previous studies, only one dead-state temperature was considered for exergy calculations. However, it is important to note that the deadstate temperature can vary. Therefore, the impact of changing the dead-state temperature on the exergy of the internal combustion engine becomes crucial. In this particular study, the exergy variations of the newly developed boron-added fuels ES12.5 and MS12.5, as well as gasoline blended with ethanol (E12.5), gasoline blended with methane (M12.5), and pure gasoline (B100) were examined. These variations were analyzed at different dead-state temperatures ranging from 273 K to 298 K. This study focused on examining the detailed changes in the exergy of exhaust gases emitted from the combustion process, specifically at the exhaust outlet, with respect to variations in the dead-state temperature. Furthermore, the impact of the dead-state temperature on various parameters commonly used in thermodynamic analyses, including improvement potential, productivity lack, and fuel depletion ratio were investigated. Through analysis, the study revealed significant variations in the exergy of internal combustion engines when the dead-state temperature was altered. These findings emphasized the importance of considering the dead-state temperature as a critical factor in understanding and optimizing the exergic performance of internal combustion engines.Öğe Second law analysis of an internal combustion engine for different fuels consisting of NaBH4, ethanol and methanol mixtures(Pergamon-Elsevier Science Ltd, 2024) Uckan, Irfan; Yakin, Ahmet; Behcet, RasimThis study was carried out to investigate the effects of NaBH4, which is not used as an internal combustion engine fuel in the literature, on system energy and exergy when used in internal combustion engines. In the study, fuels containing oxygen and hydrogen (MSG12.5, EG12.5, ESG12.5 and MG12.5) and pure gasoline (G100) were tested at different engine speeds and the changes in the energy and exergy analyzes of the system were inves-tigated. In the experimental study, the energy and exergy values of gasoline used as fuel were at the highest values with 33.21 kW and 35.62 kW, respectively, while the energy and exergy efficiencies were 27 % and 25 %, respectively. MG12.5 fuel used in the study showed the best performance among all fuels with 38 % energy efficiency and 35 % exergy efficiency. On the other hand, it was seen that boron added ESG12.5 % fuel was the second best fuel with 35 % energy efficiency and 33 % exergy efficiency. Another fuel, boron added MSG12.5 fuel, performed better than gasoline in terms of both energy and exergy efficiency. In addition, it was determined that more than 50 % of the exergy of the fuel entering the system was lost due to exergy destruction and the exergy destruction of the fuels used in the experiments was determined at least in MG12.5, ESG12.5, EG12.5 and G100, respectively.Öğe Testing sodium borohydride as a fuel additive in internal combustion gasoline engine(Pergamon-Elsevier Science Ltd, 2022) Yakin, Ahmet; Behcet, Rasim; Solmaz, Hamit; Halis, SerdarAdditives are added to conventional fuels to ensure complete combustion of fuels, increase engine performance and reduce harmful emissions from vehicles. Hydrogen and oxygen-containing fuel additives added to fossil-based internal combustion engine fuels improve the properties of the fuels and reduce vehicle-related emissions. Evaluation of mixed fuels created by adding different types of alcohol and nano-sized additives to motor fuels as an alternative fuel in motor vehicles is among the most researched scientific studies recently. In this study, alcohol-gasoline fuels (E5, M5), NaBH4-alcoholgasoline fuels (ES5, MS5), and pure gasoline were tested in a gasoline engine. Fuels used in engine tests; E5 fuel (5% by volume ethanol 95% gasoline blend), M5 fuel (5% by volume methanol 95% gasoline blend), ES5 fuel (5% by volume NaBH4-ethanol solution 95% gasoline blend), MS5 fuel (5% by volume NaBH4methanol solution 95% gasoline mixture) and pure gasoline. In the experiments, brake thermal efficiency, engine torque, specific fuel consumption, and exhaust gas temperature were measured and compared with pure gasoline. Compared to gasoline, the exhaust gas temperatures of all blended fuels decreased. On the other hand, there was an increase in engine torque values, except for ES5 fuel. At the same time, there was an increase in both specific fuel consumption and brake thermal efficiency. When the CO and HC emission values of the blended fuels are compared with the gasoline fuel values, the highest reduction in CO emissions occurred in ES5 blended fuel with 65.53%, while the highest decrease in HC emission was realized in E5 fuel with 19.09%. On the other hand, when NOx and CO2 emissions of E5, M5, ES5, MS5 mixed fuels are compared with gasoline, NOx emissions are 12.63%, 28.37%, 19.65%, respectively; decreased by 36.03% but CO2 emissions increased by 8.51%, 30.46%, 34.48%, 25.95% respectively.(c) 2022 Elsevier Ltd. All rights reserved.