Yazar "Yaying, Taja" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Matrix Transformation and Compactness on q-Catalan Sequence Spaces(Taylor & Francis Inc, 2024) Yaying, Taja; Basar, FeyziThis article intends to develop q-Catalan sequence spaces l(p)(C(q)) and l(infinity)(C(q)) due to q-Catalan matrix C(q) in lp and l infinity, respectively. Apart from obtaining some basic topological properties and Schauder basis, we compute alpha-, beta-, and gamma-duals of the spaces l(p)(C(q)) and l(infinity)(C(q)). We state and prove a theorem that characterize certain matrix classes (X, Y), where X is either of the space l(p)(C(q)) or l(infinity)(C(q)) and Y is an element of{l(infinity),c(0),c,l(1)}. The final section is devoted to determination of certain conditions by which a matrix operator becomes compact.Öğe ON SOME LAMBDA-PASCAL SEQUENCE SPACES AND COMPACT OPERATORS(Rocky Mt Math Consortium, 2022) Yaying, Taja; Basar, FeyziWe introduce Lambda-Pascal sequence spaces l(q) (G), c0(G), c(G) and l8(G) generated by the matrix G which is obtained by the product of Pascal matrix and 3-matrix. It is proved that the Lambda-Pascal sequence spaces l (q) ( G), c(0)(G), c(G) and l(infinity)(G) are BK-spaces and linearly isomorphic to l (q), c(0), c and l(infinity), respectively. We construct Schauder bases and obtain alpha-, ss- and gamma-duals of the new spaces. We state and prove characterization theorems related to matrix transformation from the space l (q) (G) to the spaces l(infinity), c and c(0). Finally, we determine necessary and sufficient conditions for a matrix operator to be compact from the space c(0)(G) to any one of the spaces l(infinity), c, c(0) or l(1).Öğe ON SOME NEW SEQUENCE SPACES DEFINED BY q-PASCAL MATRIX(Ivane Javakhishvili Tbilisi State Univ, 2022) Yaying, Taja; Hazarika, Bipan; Basar, FeyziIn this study, we construct the q-analog P(q) of Pascal matrix and study the sequence spaces c(P(q)) and c(0)(P(q)) defined as the domain of q-Pascal matrix P(q) in the spaces c and c(0), respectively. We investigate certain topological properties, determine Schauder bases and compute Kothe duals of the spaces c(0)(P(q)) and c(P(q)). We state and prove the theorems characterizing the classes of matrix mappings from the space c(P(q)) to the spaces l(infinity) of bounded sequences and f of almost convergent sequences. Additionally, we also derive the characterizations of some classes of infinite matrices as a direct consequence of the results about the classes (c(P (q)), l(infinity)) and (c(P(q)), f)). Finally, we obtain the necessary and sufficient conditions for a matrix operator to be compact from the space c(0)(P (q)) to anyone of the spaces l(infinity), c, c(0), l(1), cs(0), cs, bs.Öğe A study on some paranormed sequence spaces due to Lambda-Pascal matrix(Springer Birkhauser, 2024) Yaying, Taja; Basar, FeyziThis paper delves into the examination of algebraic and topological attributes associated with the domains c0(G,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0(G,q)$$\end{document}, c(G, q), and l infinity(G,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty (G,q)$$\end{document} pertaining to the Lambda-Pascal matrix G in Maddox's spaces c0(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0(q)$$\end{document}, c(q), and l infinity(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty (q)$$\end{document}, respectively. The determination of the Schauder basis and the computation of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-, beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-, and gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-duals for these Lambda-Pascal paranormed spaces are carried out. The ultimate section is dedicated to elucidating the classification of the matrix classes (l infinity(G,q),l infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\ell _{\infty }(G,q),\ell _{\infty })$$\end{document}, (l infinity(G,q),f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\ell _{\infty }(G,q),f)$$\end{document}, and (l infinity(G,q),c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\ell _{\infty }(G,q),c)$$\end{document}, concurrently presenting the characterization of specific other sets of matrix transformations in the space l infinity(G,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{\infty }(G,q)$$\end{document} as corollaries derived from the primary outcomes.