Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Yilderim, Ismail Okan" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    ARTIFICIAL INTELLIGENCE-ASSISTED PREDICTION OF COVID-19 STATUS BASED ON THORAX CT SCANS USING A PROPOSED META-LEARNING STRATEGY
    (Carbone Editore, 2022) Guldogan, Emek; Yilderim, Ismail Okan; Sevgi, Serkan; Colak, Cemil
    Background: Radiological techniques integrated with artificial intelligence (AI) are a promising diagnostic tool for the rapidly increasing number of COVID-19 cases today. In this study, we intended to construct an artificial intelligence-assisted prediction of COVID-19 status based on thorax computed tomography (CT) scans using a proposed meta-learning strategy. Methods: A public dataset including 1252 positive and 1230 negative thorax CT scans of SARS-CoV-2 was used in the current study. The CT images for COVID-19 status were analyzed by 26 transfer learning (TL) models. The stacking ensemble learning was used to obtain more consistent and high-performance prediction results by combining the prediction results of 26 TL models with an Results: Mobile had the best prediction with an accuracy of 0.946 (95% CI: 0.93-0.962) among the TL models. The Meta-learning model yielded the best classification accuracy of 0.993 (0.98-1), which outperformed MobileNet, the most successful architecture Conclusions: The proposed meta-model that can distinguish CT images between COVID-19 positive and abnormal/normal conditions due to other etiology of COVID-19 negative may be beneficial in such pandemics. The AI application in this study can be used in mobile, desktop, and web-based platforms to have facilitating and complementary effects on classical reporting and the current workload in radiology departments.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim