Yazar "Yildirim, Ertan" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Growth, Nutrient Uptake, and Yield Promotion of Broccoli by Plant Growth Promoting Rhizobacteria with Manure(Amer Soc Horticultural Science, 2011) Yildirim, Ertan; Karlidag, Huseyin; Turan, Metin; Dursun, Atilla; Goktepe, FahrettinThis study was conducted to investigate the effects of root inoculations with Bacillus cereus (N-2-fixing), Brevibacillus reuszeri (P-solubilizing), and Rhizobium rubi (both N-2-fixing and P-solubilizing) on plant growth, nutrient uptake, and yield of broccoli in comparison with manure (control) and mineral fertilizer application under field conditions in 2009 and 2010. Bacterial inoculations with manure compared with control significantly increased yield, plant weight, head diameter, chlorophyll content, nitrogen (N), potassium (K), calcium (Ca), sulfur (S), phosphorus (P), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) content of broccoli. The lowest yield per plant, plant weight, steam diameter, and chlorophyll content were recorded in the control, but the manure with Bacillus cereus (BC), Rhizobium rubi (RR), and Brevibacillus reuszeri (BR) inoculations increased yield 17.0%, 20.2%, and 24.3% and chlorophyll content by 14.7%, 14.0%, and 13.7% over control, respectively. Bacterial inoculations with manure significantly increased uptake of macronutrients and micronutrients by broccoli. In conclusion, seedling inoculation with BR and especially RR may partially substitute costly synthetic fertilizers in broccoli.Öğe Plant Growth-promoting Rhizobacteria Mitigate Deleterious Effects of Salt Stress on Strawberry Plants (Fragaria xananassa)(Amer Soc Horticultural Science, 2013) Karlidag, Huseyin; Yildirim, Ertan; Turan, Metin; Pehluvan, Mucahit; Donmez, FigenThe effect of selected plant growth-promoting rhizobacteria (PGPR) on the growth, chlorophyll content, nutrient element content, and yield of strawberry plants under natural field salinity conditions stress was investigated. Field experiments were conducted using a randomized complete block design with five PGPRs (Bacillus subtilis EY2, Bacillus atrophaeus EY6, Bacillus spharicus GC subgroup B EY30, Staphylococcus kloosii EY37, and Kocuria erythromyxa EY43) and a control (no PGPR) in 2009 and 2010. PGPR inoculations significantly increased the growth, chlorophyll content, nutrient element content, and yield of strawberry plants. PGPR treatments lowered electrolyte leakage of plants under saline conditions. The leaf relative water content (LRWC) of plants rose with bacterial inoculation. All nutrient element contents of leaves and roots investigated were significantly increased with PGPR inoculations with the exception of sodium (Na) and chlorine (Cl). The highest efficiency to alleviate salinity stress on the yield and nutrient uptake of strawberry plants was obtained from EY43 (228 g per plant) and EY37 (225 g per plant) treatment and the yield increasing ratio of plants was 48% for EY43 and 46% for EY 37 compared with the control treatment (154 g per plant). The highest nitrogen (N), potassium (K), phosphorus (P), calcium (Ca), magnesium (Mg), sulfur (S), manganese (Mn), copper (Cu), and iron (Fe) concentrations were obtained from EY43 and followed by E6, E37, and E30, and increasing ratio of leaves and root N, P, K, Ca, Mg, S, Mn, Cu, and Fe contents were 22% to 33%, 34% to 8.8%, 89% to 11%, 11.0% to 7.2%, 5.1% to 6.2%, 97% to 65%, 120% to 140%, 300% to 15%, and 111% to 9.0%, respectively. The results of the study suggested that PGPR inoculations could alleviate the deleterious effects of salt stress conditions on the growth and yield of strawberry plants under salinity conditions.Öğe Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria x ananassa)(Elsevier, 2011) Karlidag, Huseyin; Yildirim, Ertan; Turan, MetinIn order to study the effect of brassinosteroids on the amelioration of the inhibitory effect of salinity on strawberry plants, a short-term experiment was conducted in greenhouse to test different concentrations of 24-epibrassinolide (24-EBL) (0.0, 0.5, and 1 mu M) by foliar application on some agro-physiological properties, such as shoot dry weight, and root dry weight, stomatal conductance (SC), leaf relative water content (LRWC), leaf chlorophyll reading values (LCRV) and membrane permeability (MP) of strawberry 'Fern' and 'A6' cultivars irrigated with salt water (35 mM NaCl). 24-EBL solutions were applied twice during late afternoon hours with 7d intervals using a hand-held sprayer. Plant shoot dry weight, root dry weight, SC, LRWC and LCRV were reduced by 29-33%, 45-15%, 71-55%. 11-13%, and 12-13% for 'A6' and 'Fern' cultivars at 35 mM (without 24-EBL applied), respectively, as compared to the nonsaline treatment, but MP increased 40% and 12%. An exogenous supply of 24-EBL was found to be successful in alleviating of the inhibitory effects of salt stress on plant growth parameters and nutrient contents. 24-EBL (1 mu M) application under saline condition significantly increased shoot and root dry matter, SC, LRWC and LCRV of plants, and alleviation effects of 1 mu M 24-EBL application was 20%, 15%, 122%, 5.8%, and 10.9% for 'A6' and 47%, 8.0%, 83%, 33.3% and 6.0% for 'Fern' cultivars, respectively. Macro-micro element content of plant leaf and root increased with increase 24-EBL except for Na under salinity stress. These results support the view that supplementary 24-EBL application can overcome the effects of salinity stress on plant growth and growth parameter under saline conditions. (C) 2011 Elsevier B.V. All rights reserved.Öğe SALT TOLERANCE OF PHYSALIS DURING GERMINATION AND SEEDLING GROWTH(Pakistan Botanical Soc, 2011) Yildirim, Ertan; Karlidag, Huseyin; Dursun, AtillaThe study was conducted to evaluate the effect of NaCl salinity on germination and emergence of Physalis ixocarpa and Physalis peruviana. Seeds UP. ixocarpa and P. peruviana were germinated by the use of 0, 30, 60, 90, 120 and 130 mM NaCl solutions in petri dishes. Final germination percentage (FGP) decreased with the increase in NaCl concentration. Both species germinated at the ranges of salinity. P. peruviana gave the greater germination percentages under salt stress than P. ixocarpa. NaCl salinity at different concentrations adversely affected germination rates. For seedling growth, seeds of both species were sown at 10 mm depth in plastic trays filled with peat to determine final emergence percentage (MP). The trays were irrigated manually to saturation every day with 0, 30, 60, 90, 120, 150 or 180 mM NaCl solutions to maintain the level of salinity. Salinity affected seed emergence and seedlings growth more than seed germination. The study showed that no emergence of Physalis was observed at 90, 120 and 180 mM NaCl salinity. Fresh and dry weights of normal seedlings were also evaluated. Salt stress significantly decreased the plant fresh and dry weight of both species. Based on the results of the experiment, it can be concluded that seedling emergence and growth is more sensitive to salt stress than seed germination in Physalis.