Yazar "Yilmaz, H. Birkan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effect of receiver shape and volume on the Alzheimer disease for molecular communication via diffusion(Inst Engineering Technology-Iet, 2020) Isik, Ibrahim; Yilmaz, H. Birkan; Demirkol, Ilker; Tagluk, Mehmet EminNano-devices are featured to communicate via molecular interaction, the so-called molecular communication (MC). In MC systems, the information is carried by molecules where the amount of molecules constitutes the level of the signal. In this study, an MC-based system was analysed with different receiver topology and related parameters, such as size, shape, and orientation of receptors on the receiver. Also in the concept of nano-medicine, the effect of amyloid-beta (A(beta)), which is believed as the main cause of Alzheimer disease, on the successful reception ratio of molecules with the proposed receiver models was investigated. It was demonstrated that the cubic receiver model is superior to sphere one in terms of the correct reception ratio of the molecular signal. A cubic model where its edge (not rotated around the centre) is placed across the transmitter demonstrated a better performance in reducing the effect of A(beta) as compared to the sphere model while a cubic model where its corner (rotated around the centre) is placed across the transmitter demonstrated a worse performance than the spherical model. From this expression, it may be concluded that with the adjustment of topological system parameters the probability of successful reception ratio in MC may be possible.Öğe A Preliminary Investigation of Receiver Models in Molecular Communication via Diffusion(Ieee, 2017) Isik, Ibrahim; Yilmaz, H. Birkan; Tagluk, Mehmet EminMolecular Communication (MC) is a new multidisciplinary subject concerning medicine, biology, and communication engineering. MC concept is introduced for modeling of communication of nano/micro scale devices. In MC systems, chemical signals carrying information in gaseous or liquid media are used. Similar to other communication systems, in MC sending information from transmitter to receiver with minimum error is one of the most important goals. In MC systems due to physical characteristics of medium, higher rates of inter symbol interference (ISI) and noise increase error probability. Figures of receiver mechanisms and signal detection techniques are therefore the main factors to be tuned for decreasing error probability. In this view, so far, many receiver models such as reversible adsorption and desorption (A&D), protrusion method, ligand receptor, and linear catalytic or CAT receiver models have been introduced. In this study, these models and the results obtained through their implementation are investigated and briefly reviewed.