Yazar "Yilmaz, Mukremin" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Slow sound propagation in a sonic crystal linear waveguide(Amer Inst Physics, 2012) Cicek, Ahmet; Kaya, Olgun Adem; Yilmaz, Mukremin; Ulug, BulentA linear waveguide along the [11] direction of a triangular sonic crystal, composed of aluminum cylinders in air is shown both experimentally and numerically to facilitate slow sound propagation. Supercell-based calculations through the finite element method reveal a band centered at approximately 16.0 kHz with 255 Hz span, exhibiting linear variation away from band edges, for the lattice constant and cylinder radii of 21.7 mm and 10.0 mm, respectively. The experimental setup is based on monitoring the propagation of a Gaussian-enveloped sinusoidal pulse at 16.0 kHz inside the waveguide. Numerical behavior of the Gaussian pulse is investigated by time-dependent finite-element computations. The experimental and numerical group velocities are found to be 26.7 m/s and 22.6 m/s, respectively. Being congruous with the experimental findings, numerical transient study of the system reveals significant longitudinal compression commensurate with the calculated group index. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3676581]Öğe Superprism effect in a deformed triangular sonic crystal(Iop Publishing Ltd, 2011) Kaya, Olgun Adem; Cicek, Ahmet; Yilmaz, Mukremin; Ulug, BulentThe superprism effect in a two-dimensional sonic crystal composed of lead cylinders in water aligned on a lattice obtained by varying the angle between the primitive vectors of triangular lattice is numerically investigated. Symmetry breaking influences the equi-frequency contours to reflect the lattice symmetry, so that compression along a direction leads to smaller critical angles of incidence. The whole 0 degrees-90 degrees range is spanned by the refracted waves at the water/sonic crystal interface for frequencies between 165 and 183 kHz, in the third band, and angles of incidence between 0 degrees and 15 degrees. The studied superprism behaviour can be used to achieve both spectral and angular resolution. The refraction angle varies linearly for small angles of incidence below 3 degrees at a constant frequency, while its frequency dependence at a given angle of incidence is quadratic for small frequencies. Finite-element computations reveal that waves are refracted into the angles calculated from the equi-frequency contours with small beam divergence at any frequencies and angles of incidence.