Yazar "Yilmaz, Rustem" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Analysis of hematological indicators via explainable artificial intelligence in the diagnosis of acute heart failure: a retrospective study(Frontiers Media Sa, 2024) Yilmaz, Rustem; Yagin, Fatma Hilal; Colak, Cemil; Toprak, Kenan; Samee, Nagwan Abdel; Mahmoud, Noha F.; Alshahrani, Amnah AliIntroduction Acute heart failure (AHF) is a serious medical problem that necessitates hospitalization and often results in death. Patients hospitalized in the emergency department (ED) should therefore receive an immediate diagnosis and treatment. Unfortunately, there is not yet a fast and accurate laboratory test for identifying AHF. The purpose of this research is to apply the principles of explainable artificial intelligence (XAI) to the analysis of hematological indicators for the diagnosis of AHF. Methods In this retrospective analysis, 425 patients with AHF and 430 healthy individuals served as assessments. Patients' demographic and hematological information was analyzed to diagnose AHF. Important risk variables for AHF diagnosis were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) feature selection. To test the efficacy of the suggested prediction model, Extreme Gradient Boosting (XGBoost), a 10-fold cross-validation procedure was implemented. The area under the receiver operating characteristic curve (AUC), F1 score, Brier score, Positive Predictive Value (PPV), and Negative Predictive Value (NPV) were all computed to evaluate the model's efficacy. Permutation-based analysis and SHAP were used to assess the importance and influence of the model's incorporated risk factors. Results White blood cell (WBC), monocytes, neutrophils, neutrophil-lymphocyte ratio (NLR), red cell distribution width-standard deviation (RDW-SD), RDW-coefficient of variation (RDW-CV), and platelet distribution width (PDW) values were significantly higher than the healthy group (p < 0.05). On the other hand, erythrocyte, hemoglobin, basophil, lymphocyte, mean platelet volume (MPV), platelet, hematocrit, mean erythrocyte hemoglobin (MCH), and procalcitonin (PCT) values were found to be significantly lower in AHF patients compared to healthy controls (p < 0.05). When XGBoost was used in conjunction with LASSO to diagnose AHF, the resulting model had an AUC of 87.9%, an F1 score of 87.4%, a Brier score of 0.036, and an F1 score of 87.4%. PDW, age, RDW-SD, and PLT were identified as the most crucial risk factors in differentiating AHF. Conclusion The results of this study showed that XAI combined with ML could successfully diagnose AHF. SHAP descriptions show that advanced age, low platelet count, high RDW-SD, and PDW are the primary hematological parameters for the diagnosis of AHF.Öğe Analysis of hematological indicators via explainable artificial intelligence in the diagnosis of acute heart failure: a retrospective study (vol 11, 1285067, 2024)(Frontiers Media Sa, 2024) Yilmaz, Rustem; Yagin, Fatma Hilal; Colak, Cemil; Toprak, Kenan; Samee, Nagwan Abdel; Mahmoud, Noha F.; Alshahrani, Amnah Ali[Abstract Not Available]Öğe Assessment of Hematological Predictors via Explainable Artificial Intelligence in the Prediction of Acute Myocardial Infarction(Ieee-Inst Electrical Electronics Engineers Inc, 2023) Yilmaz, Rustem; Yagin, Fatma Hilal; Raza, Ali; Colak, Cemil; Akinci, Tahir CetinAcute myocardial infarction (AMI) is the main cause of death in developed and developing countries. AMI is a serious medical problem that necessitates hospitalization and sometimes results in death. Patients hospitalized in the emergency department (ED) should therefore receive an immediate diagnosis and treatment. Many studies have been conducted on the prognosis of AMI with hemogram parameters. However, no study has investigated potential hemogram parameters for the diagnosis of AMI using an interpretable artificial intelligence-based clinical approach. The purpose of this research is to implement the principles of explainable artificial intelligence (XAI) in the analysis of hematological predictors for AMI. In this retrospective analysis, 477 (48.6%) patients with AMI and 504 (51.4%) healthy individuals were enrolled and assessed in predicting AMI. Of the patients with AMI, 182 (38%) had an ST-segment elevation MI (STEMI), and 295 (62%) had a non-ST-segment elevation MI (NSTEMI). Demographic and hematological information of the patients was analyzed to determine AMI. The XAI approach combined with machine learning approaches (Extreme Gradient Boosting, XGB; Adaptive Boosting, AB; Light Gradient Boosting Machine, LGBM) was applied for the estimation of AMI and distinguishing subgroups of AMI (STEMI and NSTEMI). The SHAP approach was used to explain the predictions intuitively. After selecting the 10 most important hematological parameters for AMI, the LGBM model achieved 83% and 74% accuracy for prediction of AMI, and distinguishing subgroups of AMI (STEMI and NSTEMI), respectively. SHAP results showed that neutrophil (NEU), white blood cell (WBC), platelet width of distribution (PDW), and basophil (BA) were the most important for AMI prediction. Mean corpuscular volume (MCV), BA, monocytes (MO), and lymphocytes (LY) were the most important hematological parameters that distinguish STEMI from NSTEMI. The proposed model serves as a valuable tool for physicians, facilitating the diagnosis, treatment, and follow-up of patients with AMI and distinguishing subgroups of AMI (STEMI and NSTEMI). Analyzing readily accessible hemogram parameters empowers medical professionals to make informed decisions and provide enhanced care to a wide range of individuals.