Yazar "Zhao, Yang" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe PID2018 Benchmark Challenge: learning feedforward control(Elsevier, 2018) Zhao, Yang; Dehghan, Sina; Ates, Abdullah; Yuan, Jie; Zhou, Fengyu; Li, Yan; Chen, YangQuanThe design and application of learning feedforward controllers (LFFC) for the one staged refrigeration cycle model described in the PID2018 Benchmark Challenge is presented, and its effectiveness is evaluated. The control system consists of two components: 1) a preset PID component and 2) a learning feedforward component which is a function approximator that is adapted on the basis of the feedback signal. A B-spline network based LFFC and a low-pass filter based LFFC are designed to track the desired outlet temperature of evaporator secondary flux and the superheating degree of refrigerant at evaporator outlet. Encouraging simulation results are included. Qualitative and quantitative comparison results evaluations show that, with little effort, a high-performance control system can be obtained with this approach. Our initial simple attempt of low-pass filter based LFFC and B-spline network based LFFC give J=0.4902 and J=0.6536 relative to the decentralized PID controller, respectively. Besides, the initial attempt of a combination controller of our optimized PI controller and low-pass filter LFFC gives J=0.6947 relative to the multi-variable PID controller. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.Öğe PID2018 Benchmark Challenge: Model Predictive Control With Conditional Integral Control Using A General Purpose Optimal Control Problem Solver - RIOTS(Elsevier, 2018) Dehghan, Sina; Zhao, Tiebiao; Zhao, Yang; Yuan, Jie; Ates, Abdullah; Chen, YangQuanThis paper presents a multi-variable Model Predictive Control (MPC) based controller for the one-staged refrigeration cycle model described in the PID2018 Benchmark Challenge. This model represents a two-input, two-output system with strong nonlinearities and high coupling between its variables. A general purpose optimal control problem (OCP) solver Matlab toolbox called RIOTS is used as the OCP solver for the proposed MPC scheme which allows for straightforward implementation of the method and for solving a wide range of constrained linear and nonlinear optimal control problems. A conditional integral (CI) compensator is embedded in the controller to compensate for the small steady state errors. This method shows significant improvements in performance compared to both discrete decentralized control (C1) and multi-variable PID controller (C2) originally given in PID2018 Benchmark Challenge as a baseline. Our solution is introduced in detail in this paper and our final results using the overall relative index, J, are 0.2 over Cl and 0.3 over C2, respectively. In other words, we achieved 80% improvement over Cl and 70% improvement over C2. We expect to achieve further improvements when some optimized searching efforts are used for MPC and CI parameter tuning. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.Öğe PID2018 Benchmark Challenge: Model-based Feedforward Compensator with A Conditional Integrator(Elsevier, 2018) Yuan, Jie; Ates, Abdullah; Dehghan, Sina; Zhao, Yang; Fei, Shumin; Chen, YangQuanSince proportional-integral-derivative (PID) controllers absolutely dominate the control engineering, numbers of different control structures and theories have been developed to enhance the efficiency of PID controllers. Thus, it is essential and inspiring to operate different PID control strategies to the PID2018 Benchmark Challenge. In this paper, a novel control strategy is designed for this refrigeration system, where a feedforward compensator and a conditional integrator are utilized to compensate the disturbances and remove the steady-state error in the benchmark problem, respectively. The simulation results given in the benchmark problem show the straightforward effectiveness of the proposed control structure compared with the existing control methods. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.Öğe PID2018 Benchmark Challenge: Multi-Objective Stochastic Optimization Algorithm(Elsevier, 2018) Ates, Abdullah; Yuan, Jie; Dehghan, Sina; Zhao, Yang; Yeroglu, Celaleddin; Chen, YangQuanThis paper presents a multi-objective stochastic optimization method for tuning of the controller parameters of Refrigeration Systems based on Vapour Compression. Stochastic Multi Parameter Divergence Optimization (SMDO) algorithm is modified for minimization of the Multi Objective function for optimization process. System control performance is improved by tuning of the PI controller parameters according to discrete time model of the refrigeration system with multi objective function by adding conditional integral structure that is preferred to reduce the steady state error of the system. Simulations are compared with existing results via many graphical and numerical solutions. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.