Türkiye 'Nin Gsyih Tahmini İçin Yapay Sinir Ağları Model Performanslarının Karşılaştırılması

Yükleniyor...
Küçük Resim

Tarih

2015

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi

Erişim Hakkı

Özet

Öz:Bir ülkenin gelecek yıllara ait makroekonomik değişkenlerinin tahminleri, karar vericiler için ekonomi politikaların oluşturulmasında önemli bir role sahiptir. Bu çalışmada; son yıllarda tahmin modellemesinde sıklıkla kullanılan yapay sinir ağları modeli yardımı ile ekonomik büyüme değişkeni GSYİH'nın tahmini yapılması amaçlanmıştır. Ekonomik büyüme için; Çok Katmanlı Algılayıcı (ÇKA), Radyal Tabanlı Fonksiyon Ağları (RTFA) ve geri dönüşümlü Elman Ağı kullanılarak kendi gecikmeli değerlerine göre tahminler elde edilmiştir. Kullanılan YSA mimarilerinin tahmin performansları incelendiğinde 4 girdi katmana sahip RTFA modelinin en yüksek doğruluğu sağladığı görülmüş ve bu model yardımıyla 2013Q4:2014Q4 dönemleri için ekonomik büyüme oranı tahminleri üretilmiştir. Elde edilen sonuçlar yapay sinir ağlarının ekonomik büyüme tahmininde kullanılabilecek başarılı bir yöntem olduğunu göstermiştir. Başlık (İngilizce):Artificial Neural Networks Models Performance Comparisons For Turkey's GDP Forecasting Öz (İngilizce):Estimates of economic growth for the coming years in a country has an important role in determining business plans for business entities and fiscal policies formulation for goverments. In this study, It was intended to estimate the GDP of economic growth variable with the help of artificial neural networks models which have often been used in estimation modelling recently. For the economic growth estimation were obtained according with its own delayed values by using Multiple Layer Perception (MLP), Radial Basis Function Networks (RBFN) and Recurring Elman Networks. When the estimation performances of the used artificial neural network structures were analyzed,it was seen that RBFN model having 4 input layers got the highest accuracy and through this model estimates of economic growth were produced for 2013Q4 and 2014Q4 periods. The obtained results showed that artificial neural networks were a successful method to be used in the estimates of economic growth.

Açıklama

Yıl: 2015Cilt: 16Sayı: 1ISSN: 1303-1279Sayfa Aralığı: 45 - 58 Metin Dili:Türkçe

Anahtar Kelimeler

İktisat

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Hasan S. , Oktay K. (2015). TÜRKİYE 'NİN GSYİH TAHMİNİ İÇİN YAPAY SİNİR AĞLARI MODEL PERFORMANSLARININ KARŞILAŞTIRILMASI, Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, İnönü Üniversitesi, Malatya.