SOME SEMISYMMETRY CONDITIONS ON RIEMANNIAN MANIFOLDS
dc.authorid | Yıldız, Ahmet/0000-0002-9799-1781 | |
dc.authorwosid | yıldız, ahmet/HSF-3939-2023 | |
dc.authorwosid | Yıldız, Ahmet/ABG-9622-2020 | |
dc.contributor.author | Yildiz, Ahmet | |
dc.contributor.author | Cetinkaya, Azime | |
dc.date.accessioned | 2024-08-04T21:01:11Z | |
dc.date.available | 2024-08-04T21:01:11Z | |
dc.date.issued | 2014 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | We study a Riemannian manifold M admitting a semisymmetric metric connection (del) over tilde such that the vector field U is a parallel unit vector field with respect to the Levi-Civita connection del. Firstly, we show that ifMis projectively flat with respect to the semisymmetric metric connection (del) over tilde then M is a quasi-Einstein manifold. Also we prove that if R.(P) over tilde = 0 if and only ifMis projectively semisymmetric; if (P) over tilde .R = 0 or R.(P) over tilde-(P) over tilde .R = 0 then Mis conformally flat and quasi-Einstein manifold. Here R, P and (P) over tilde denote Riemannian curvature tensor, the projective curvature tensor of del and the projective curvature tensor of (del) over tilde, respectively. | en_US |
dc.identifier.endpage | 11 | en_US |
dc.identifier.issn | 0352-9665 | |
dc.identifier.issn | 2406-047X | |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://hdl.handle.net/11616/104173 | |
dc.identifier.volume | 29 | en_US |
dc.identifier.wos | WOS:000413860500001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Univ Nis | en_US |
dc.relation.ispartof | Facta Universitatis-Series Mathematics and Informatics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | [No Keywords] | en_US |
dc.title | SOME SEMISYMMETRY CONDITIONS ON RIEMANNIAN MANIFOLDS | en_US |
dc.type | Article | en_US |