CLOSED SPHERICAL MOTIONS AND HOLDITCH THEOREM

dc.contributor.authorGUNES, R
dc.contributor.authorKELES, S
dc.date.accessioned2024-08-04T20:57:26Z
dc.date.available2024-08-04T20:57:26Z
dc.date.issued1994
dc.departmentİnönü Üniversitesien_US
dc.description.abstractIn this paper, the relation between the Steiner vector of a one-parameter closed spherical motion and the area vector of the closed spherical curve formed under the motion is discussed and some corollaries are given. Moreover, making use of the area formula of W. Blaschke and the area vector defined by H. R. Muller, the formula given by H. H. Hacisalihoglu is obtained by a different method.en_US
dc.identifier.endpage758en_US
dc.identifier.issn0094-114X
dc.identifier.issue5en_US
dc.identifier.startpage755en_US
dc.identifier.urihttps://hdl.handle.net/11616/102613
dc.identifier.volume29en_US
dc.identifier.wosWOS:A1994NU21100010en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofMechanism and Machine Theoryen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleCLOSED SPHERICAL MOTIONS AND HOLDITCH THEOREMen_US
dc.typeArticleen_US

Dosyalar