Effect of caffeic acid phenethyl ester on corneal neovascularization in rats

Küçük Resim Yok

Tarih

2001

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Swets Zeitlinger Publishers

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Purpose. Caffeic acid phenethyl ester (CAPE), a biologically active component of propolis from honeybee hives, has potent antiinflammatory and antioxidant properties. We aimed to evaluate the ability of topically applied CAPE in comparison with known steroidal (dexamethasone sodium phosphate) and nonsteroidal (indomethacin) topical agents to reduce corneal neovascularization (CNV) induced by silver nitrate cauterization in rats. Methods. Following silver nitrate cauterization on both eyes, male rats were randomly assigned to the study and control groups, each consisting of ten rats. The inhibitory effects of the test drugs against a placebo (isotonic saline) on CNV were tested and compared to each other using a previously described method in which extent of neovascularization and burn stimulus intensity were scored by a masked examiner. Briefly, burn stimulus intensity was scored from 0 to + 3 according to the height of blister from corneal surface, and extent of neovascularization was recorded from 0 to + 6 according to the distance from limbus to the end point of CNV toward the central corneal burn. Results. The mean burn stimulus score were not different among the groups (P=0.807). Percent inhibition of CNV compared to the placebo control and its significance were 31.5%, P=0.011 for indomethacin; 56%, P<0.001 for dexamethasone; and 52%, P<0.001 for CAPE. Dexamethasone was significantly (P<0.05) more effective than indomethacin in inhibition of neovascular growth. CAPE was found to be superior (P<0.05) to indomethacin and almost as effective as (P>0.05) dexamethasone in reducing CNV. Conclusion. Topically applied CAPE was demonstrated to have an inhibitory effect, comparable to that of topical dexamethasone, on CNV in this rat model. Antiinflammatory and antioxidant properties of CAPE may contribute to its suppression on CNV.

Açıklama

Anahtar Kelimeler

caffeic acid phenethyl ester, cornea, neovascularization

Kaynak

Current Eye Research

WoS Q Değeri

Q2

Scopus Q Değeri

Cilt

23

Sayı

4

Künye