Reaction mechanism evolutionary analysis and role of zinc in Drosophila methionine R sulfoxide reductase

dc.authorid110769en_US
dc.contributor.authorKumar, R. Abhilash
dc.contributor.authorKoç, Ahmet
dc.contributor.authorCerny, Ronald L.
dc.contributor.authorGladyshev, Vadim N.
dc.date.accessioned2017-06-20T06:57:10Z
dc.date.available2017-06-20T06:57:10Z
dc.date.issued2002
dc.departmentİnönü Üniversitesien_US
dc.descriptionJ Biol Chemen_US
dc.description.abstractMethionine residues in proteins are susceptible to oxidation, and the resulting methionine sulfoxides can be reduced back to methionines by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). Herein, we have identified two MsrB families that differ by the presence of zinc. Evolutionary analyses suggested that the zinc-containing MsrB proteins are prototype enzymes and that the metal was lost in certain MsrB proteins later in evolution. Zinc-containing Drosophila MsrB was further characterized. The enzyme was found to employ a catalytic Cys124 thiolate, which directly interacted with methionine sulfoxide, resulting in methionine and a Cys124 sulfenic acid intermediate. A subsequent reaction of this intermediate with Cys69 generated an intramolecular disulfide. Dithiothreitol could reduce either the sulfenic acid or the disulfide, but the disulfide was a preferred substrate for thioredoxin, a natural electron donor. Interestingly, the C69S mutant could complement MsrA/MsrB deficiency in yeast, and the corresponding natural form of mouse MsrB was active with thioredoxin. These data indicate that MsrB proteins employ alternative mechanisms for sulfenic acid reduction. Four other conserved cysteines in Drosophila MsrB (Cys51, Cys54, Cys101, and Cys104) were found to coordinate structural zinc. Mutation of any one or a combination of these residues resulted in complete loss of metal and catalytic activity, demonstrating an essential role of zinc in Drosophila MsrB. In contrast, two conserved histidines were important for thioredoxin-dependent activity, but were not involved in zinc binding. A Drosophila MsrA gene was also cloned, and the recombinant enzyme was found to be metal-free and specific for methionine S-sulfoxide and to employ a similar sulfenic acid/disulfide mechanism.en_US
dc.identifier.citationAbhilash, K., KOÇ, A., Ronald, C., & Vadim, G. (2002). Reaction mechanism evolutionary analysis and role of zinc in Drosophila methionine R sulfoxide reductase . J Biol Chem, (277 (40)), 37527–0.en_US
dc.identifier.endpage0en_US
dc.identifier.issue40en_US
dc.identifier.startpage37527en_US
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/pubmed/12145281?
dc.identifier.urihttps://hdl.handle.net/11616/7113
dc.identifier.volume277en_US
dc.language.isoenen_US
dc.publisherJ Biol Chemen_US
dc.relation.ispartofJ Biol Chemen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleReaction mechanism evolutionary analysis and role of zinc in Drosophila methionine R sulfoxide reductaseen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Makale Dosyası.pdf
Boyut:
889.27 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale Dosyası
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: