FUNCTION BASES FOR TOPOLOGICAL VECTOR SPACES

dc.authorwosidYilmaz, Yilmaz/A-9582-2018
dc.contributor.authorYilmaz, Yilmaz
dc.date.accessioned2024-08-04T20:58:52Z
dc.date.available2024-08-04T20:58:52Z
dc.date.issued2009
dc.departmentİnönü Üniversitesien_US
dc.description.abstractOur main interest in this work is to characterize certain operator spaces acting on some important vector-valued function spaces such),CA as (V(a))(c0)(a is an element of A), by introducing a new kind basis notion for general Topological vector spaces. Where A is an infinite set, each V(a) is a Banach space and (V(a))(c0)(a is an element of A) is the linear space of all functions x: A -> boolean OR V(a) such that, for each epsilon > 0, the set {a is an element of A : parallel to x(a)parallel to > epsilon} is finite or empty. This is especially important for the vector-valued sequence spaces (V(i))(c0)(i is an element of N) because of its fundamental place in the theory of the operator spaces (see, for example, [12]).en_US
dc.identifier.endpage353en_US
dc.identifier.issn1230-3429
dc.identifier.issue2en_US
dc.identifier.startpage335en_US
dc.identifier.urihttps://hdl.handle.net/11616/103239
dc.identifier.volume33en_US
dc.identifier.wosWOS:000267048300010en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherJuliusz Schauder Ctr Nonlinear Studiesen_US
dc.relation.ispartofTopological Methods in Nonlinear Analysisen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiorthogonal systemsen_US
dc.subjectSchauder basesen_US
dc.subjectgeneralization of basesen_US
dc.subjectoperators on function spacesen_US
dc.subjectvector-valued function spacesen_US
dc.subjectrepresentation of operatorsen_US
dc.titleFUNCTION BASES FOR TOPOLOGICAL VECTOR SPACESen_US
dc.typeArticleen_US

Dosyalar