TRANSLATION, MODULATION AND DILATION SYSTEMS IN SET-VALUED SIGNAL PROCESSING
dc.authorid | Yilmaz, Yilmaz/0000-0003-1484-782X | |
dc.authorwosid | Yilmaz, Yilmaz/A-9582-2018 | |
dc.contributor.author | Levent, H. | |
dc.contributor.author | Yilmaz, Y. | |
dc.date.accessioned | 2024-08-04T21:02:17Z | |
dc.date.available | 2024-08-04T21:02:17Z | |
dc.date.issued | 2018 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | In this paper, we investigate a very important function space consists of set-valued functions defined on the set of real numbers with values on the space of all compact-convex subsets of complex numbers for which the pth power of their norm is integrable. In general, this space is denoted by L-p (R, Omega(C)) for 1 <= p < infinity and it has an algebraic structure named as a quasilinear space which is a generalization of a classical linear space. Further, we introduce an inner-product (set-valued inner product) on L-2 (R, Omega(C)) and we think it is especially important to manage interval-valued data and interval-based signal processing. This also can be used in imprecise expectations. The definition of inner-product on L-2 (R, Omega(C)) is based on Aumann integral which is ready for use integration of set-valued functions and we show that the space L-2 (R, Omega(C)) is a Hilbert quasilinear space. Finally, we give translation, modulation and dilation operators which are three fundational set-valued operators on Hilbert quasilinear space L-2 (R, Omega(C)). | en_US |
dc.identifier.doi | 10.15330/cmp.10.1.143-164 | |
dc.identifier.endpage | 164 | en_US |
dc.identifier.issn | 2075-9827 | |
dc.identifier.issn | 2313-0210 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 143 | en_US |
dc.identifier.uri | https://doi.org/10.15330/cmp.10.1.143-164 | |
dc.identifier.uri | https://hdl.handle.net/11616/104630 | |
dc.identifier.volume | 10 | en_US |
dc.identifier.wos | WOS:000437802500012 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Vasyl Stefanyk Precarpathian Natl Univ | en_US |
dc.relation.ispartof | Carpathian Mathematical Publications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Hilbert quasilinear space | en_US |
dc.subject | set-valued function | en_US |
dc.subject | Aumann integral | en_US |
dc.subject | translation | en_US |
dc.subject | modulation | en_US |
dc.subject | dilation | en_US |
dc.title | TRANSLATION, MODULATION AND DILATION SYSTEMS IN SET-VALUED SIGNAL PROCESSING | en_US |
dc.type | Article | en_US |