The effects of hesperidin on idiopathic pulmonary fibrosis evaluated by histopathologial-biochemical and micro-computed tomography examinations in a bleomycin-rat model.

dc.authoridTimurkaan, Necati/0000-0001-5567-991X
dc.authoridCiftci, Osman/0000-0001-5755-3560
dc.authorwosidTimurkaan, Necati/V-7016-2018
dc.authorwosidSaraç, Kaya/ABI-1091-2020
dc.contributor.authorGormeli, Cemile Ayse
dc.contributor.authorSarac, Kaya
dc.contributor.authorCiftci, Osman
dc.contributor.authorTimurkaan, Necati
dc.contributor.authorMalkoc, Siddik
dc.date.accessioned2024-08-04T21:02:02Z
dc.date.available2024-08-04T21:02:02Z
dc.date.issued2016
dc.departmentİnönü Üniversitesien_US
dc.description.abstractIdiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive parenchymal lung disease. The pathology is characterized by recurrent injury to microscopic alveolar epithelial cells. These injuries activate inflammatory cells, resulting in the proliferation of fibroblasts and alveolar tissue damage. Interstitial inflammation, advanced oxidative stress, and abnormal antioxidant activity were demonstrated to be the main causes of IPF. Hesperidin (HP) is a bioflavonoid with anti-inflammatory, antioxidant, anticarcinogenic, and analgesic actions. HP may be able to prevent pulmonary fibrosis, and may ultimately lead to healthy lung function. We hypothesized that HP could prevent Bleomycin (BLC)-induced pulmonary fibrosis due to its biochemical, antioxidant, and anti-inflammatory properties and may ultimately lead to healthy lung function. Based on these findings, we hypothesized that HP could prevent BLC-induced pulmonary fibrosis due to its biochemical, antioxidant, and anti-inflammatory properties. The animals were divided into 4 groups with 14 rats per group. The experimental treatments were as follows: Control, BLC, HP, and BLC+HP. Six of the 14 lungs in each group were sent for micro CT analysis. The remaining 8 lung specimens were harvested for histopathological and biochemical analyses. BLC-treated rats showed marked histopathological changes in the lungs. In these rats, thickening of interalveolar septa due to macrophage and lymphocyte infiltration, as well as fibroblast proliferation, were observed. Histopathological changes were less severe in the BLC+HP group compared with the BLC group. HP treatment led to a decrease in lipid peroxidation and an increase in antioxidant status compared with the BLC group. Also micro-CT showed a significant positive correlation with histopathological and biochemical results. To the best of our knowledge, this is the first study to evaluate the beneficial effects of HP against pulmonary fibrosis using histopathological, biochemical, and micro-CT analyses and HP successfully minimized the severity of BLC-induced lung injury, which was used as a model for IPF.en_US
dc.description.sponsorshipIUBAP (Scientific Research Fund of Inonu University) [2015/56]en_US
dc.description.sponsorshipWe acknowledge,the support of IUBAP (Scientific Research Fund of Inonu University) under Grant 2015/56.en_US
dc.identifier.endpage742en_US
dc.identifier.issn0970-938X
dc.identifier.issn0976-1683
dc.identifier.issue3en_US
dc.identifier.startpage737en_US
dc.identifier.urihttps://hdl.handle.net/11616/104403
dc.identifier.volume27en_US
dc.identifier.wosWOS:000388456100025en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherAllied Acaden_US
dc.relation.ispartofBiomedical Research-Indiaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectIdiopathic pulmonary fibrosisen_US
dc.subjectMicro-computed tomographyen_US
dc.subjectHesperidinen_US
dc.titleThe effects of hesperidin on idiopathic pulmonary fibrosis evaluated by histopathologial-biochemical and micro-computed tomography examinations in a bleomycin-rat model.en_US
dc.typeArticleen_US

Dosyalar