Prediction of Melanoma from Dermoscopic Images Using Deep Learning-Based Artificial Intelligence Techniques

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ieee

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Recently, hospitals and health care institutions have increasingly been addressing clinical decision support systems (CDSS), which can offer specific patient assessments or recommendations to physicians and health care professionals. It is very useful to develop CDSS which can help physicians to make meaningful and correct decisions by using existing data or image sets. Also, CDSS increases the diagnostic accuracy of diseases, provides significant facilities in precision medicine applications, increases operating efficiency of hospitals and reduces costs. In this context, the proposed project intends to create a model usingpre-trained networks (i.e. VGG-16,) based on deep learning (DL) that can successfully predict the melanoma using dermoscopic images. The current study provides clinical support to physicians in the medical decision-making process for the diagnosis of melanoma.

Açıklama

International Conference on Artificial Intelligence and Data Processing (IDAP) -- SEP 21-22, 2019 -- Inonu Univ, Malatya, TURKEY

Anahtar Kelimeler

Classification, Deep-learning, Melanoma, Keras, Dermoscopic imaging

Kaynak

2019 International Conference on Artificial Intelligence and Data Processing (Idap 2019)

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

Sayı

Künye