On trace of symmetric bi-gamma-derivations in gamma-near-rings
dc.authorid | ÖZTÜRK, Mehmet Ali/0000-0002-1721-1053 | |
dc.authorwosid | Öztürk, Mehmet/JFJ-3399-2023 | |
dc.authorwosid | ÖZTÜRK, Mehmet Ali/AAA-7512-2019 | |
dc.contributor.author | Uckun, Mustafa | |
dc.contributor.author | Oeztuerk, Mehmet Ali | |
dc.date.accessioned | 2024-08-04T21:00:08Z | |
dc.date.available | 2024-08-04T21:00:08Z | |
dc.date.issued | 2007 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | Let M be a 2-torsion free 3-prime left Gamma-near-ring with multiplicative center C. For x is an element of M, let C(x) be the centralizer of x in M. The aim of this paper is to study the trace of symmetric bi-Gamma-derivations (also symmetric bi-generalized Gamma-derivations) on M. Main results are the following theorems: Let D(.,.) be a non-zero symmetric bi-Gamma-derivation of M and F(.,.) a symmetric bi-additive mapping of M. Let d and f be traces of D(.,.) and F(.,.), respectively. In this case (1) If d(M) subset of C, then M is a commutative ring. (2) If d(y), d(y) + d(y) is an element of C(D(x, z)) for all x, Y, z is an element of M, then M is a commutative ring. (3) If F(.,.) is a non-Zero symmetric bigeneralized Gamma-derivation of M associated with D(.,.) and f(M) C C, then M is a commutative ring. (4) If F(.,.) is a non-zero symmetric bi-generalized Gamma-derivation of M associated with D(.,.) and f(y), f(y) +,f(y) is an element of C(D(x, z)) for all X, y, z is an element of M, then M is a commutative ring. | en_US |
dc.identifier.endpage | 339 | en_US |
dc.identifier.issn | 0362-1588 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 323 | en_US |
dc.identifier.uri | https://hdl.handle.net/11616/103799 | |
dc.identifier.volume | 33 | en_US |
dc.identifier.wos | WOS:000247126600001 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Univ Houston | en_US |
dc.relation.ispartof | Houston Journal of Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | prime Gamma-near-ring | en_US |
dc.subject | symmetric bi-Gamma-derivation | en_US |
dc.subject | symmetric bi-generalized Gamma-derivation | en_US |
dc.title | On trace of symmetric bi-gamma-derivations in gamma-near-rings | en_US |
dc.type | Article | en_US |