Surface Defect Detection Using Deep U-Net Network Architectures

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ieee

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Surface defects detection in products used in industry such as steel, fabric and marble is very important in terms of increasing product quality and preventing financial losses. However, automatic surface defects detection is a very difficult problem due to the complexity and diversity of surface defects. In this study, U-net based VGG16-Unet and Resnet34-Unet network models are proposed for Surface defects detection. The proposed model used spatial features in the first layers together with deep semantic features. In the proposed network models, the trained weights of the VGG16 and Resnet34 network architectures were used for the input parameters of the Unet architecture. In experimental studies, the highest F1-score value for MT and AITEX data sets was obtained as 91.07% and 94.67%, respectively, with the proposed Resnet34-Unet model. According to the results, it was observed that the defective areas showing similarity with the background were successfully separated by using the proposed model.

Açıklama

29th IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUN 09-11, 2021 -- ELECTR NETWORK

Anahtar Kelimeler

Surface Defects Detection, Feature Extraction, Unet, Deep Learning

Kaynak

29th Ieee Conference on Signal Processing and Communications Applications (Siu 2021)

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

Sayı

Künye