Classification of EMG Signals by LRF-ELM
Küçük Resim Yok
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ieee
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Electromyogram (EMG) signal can be defined as the electrical activity of muscles cells. It is commonly used in motion recognition, treatment of neuromuscular disorders and prosthetic hand control. In this study, classification of EMG signals obtained from 6 different hand shapes of holding object was proposed. At first Short Time Fourier Transform of the EMG signal were evaluated to obtain their Time-Frekans representation. After than these T-F images were segmented and their mean values were evaluated to reduce the dimension of the images. Local Receptive Fields based Extreme Learning Machines (ELM-LRF) used to classification of these hand shapes of holding object. Evaluated accuracy is 94.12 %.
Açıklama
2017 International Artificial Intelligence and Data Processing Symposium (IDAP) -- SEP 16-17, 2017 -- Malatya, TURKEY
Anahtar Kelimeler
EMG Signals, Motion Recognition, Local Receptive Fields Based Extreme Learning Machine
Kaynak
2017 International Artificial Intelligence and Data Processing Symposium (Idap)
WoS Q Değeri
N/A