Classification of EMG Signals by LRF-ELM

Küçük Resim Yok

Tarih

2017

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ieee

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Electromyogram (EMG) signal can be defined as the electrical activity of muscles cells. It is commonly used in motion recognition, treatment of neuromuscular disorders and prosthetic hand control. In this study, classification of EMG signals obtained from 6 different hand shapes of holding object was proposed. At first Short Time Fourier Transform of the EMG signal were evaluated to obtain their Time-Frekans representation. After than these T-F images were segmented and their mean values were evaluated to reduce the dimension of the images. Local Receptive Fields based Extreme Learning Machines (ELM-LRF) used to classification of these hand shapes of holding object. Evaluated accuracy is 94.12 %.

Açıklama

2017 International Artificial Intelligence and Data Processing Symposium (IDAP) -- SEP 16-17, 2017 -- Malatya, TURKEY

Anahtar Kelimeler

EMG Signals, Motion Recognition, Local Receptive Fields Based Extreme Learning Machine

Kaynak

2017 International Artificial Intelligence and Data Processing Symposium (Idap)

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

Sayı

Künye