High Dimensional Data Analysis: Integrating Submodels

dc.authoridYuzbasi, Bahadir/0000-0002-6196-3201
dc.authorwosidAhmed, Syed/GSN-7305-2022
dc.authorwosidYuzbasi, Bahadir/F-6907-2013
dc.contributor.authorAhmed, Syed Ejaz
dc.contributor.authorYuzbasi, Bahadir
dc.coverage.doi10.1007/978-3-319-41573-4
dc.date.accessioned2024-08-04T20:58:58Z
dc.date.available2024-08-04T20:58:58Z
dc.date.issued2017
dc.departmentİnönü Üniversitesien_US
dc.description.abstractWe consider an efficient prediction in sparse high dimensional data. In high dimensional data settings where d >> n, many penalized regularization strategies are suggested for simultaneous variable selection and estimation. However, different strategies yield a different submodel with d(i) < n, where di represents the number of predictors included in ith submodel. Some procedures may select a submodel with a larger number of predictors than others. Due to the trade-off between model complexity and model prediction accuracy, the statistical inference of model selection becomes extremely important and challenging in high dimensional data analysis. For this reason we suggest shrinkage and pretest strategies to improve the prediction performance of two selected submodels. Such a pretest and shrinkage strategy is constructed by shrinking an overfitted model estimator in the direction of an underfitted model estimator. The numerical studies indicate that our post-selection pretest and shrinkage strategy improved the prediction performance of selected submodels.en_US
dc.identifier.doi10.1007/978-3-319-41573-4_14
dc.identifier.endpage304en_US
dc.identifier.isbn978-3-319-41573-4
dc.identifier.isbn978-3-319-41572-7
dc.identifier.issn1431-1968
dc.identifier.startpage285en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-319-41573-4_14
dc.identifier.urihttps://hdl.handle.net/11616/103305
dc.identifier.wosWOS:000412058600015en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.ispartofBig and Complex Data Analysis: Methodologies and Applicationsen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMonte Carlo simulationen_US
dc.subjectPretest, penalty and shrinkage strategiesen_US
dc.subjectSparse regression modelsen_US
dc.titleHigh Dimensional Data Analysis: Integrating Submodelsen_US
dc.typeBook Chapteren_US

Dosyalar