Yazar "Anil, Derya Aktas" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Assessing the Antiangiogenic Effects of Chalcones and Their Derivatives(Taylor & Francis Ltd, 2024) Burmaoglu, Serdar; Gobek, Arzu; Anil, Derya Aktas; Alagoz, Mehmet Abdullah; Guner, Adem; Guler, Cem; Hepokur, CeylanPathological angiogenesis plays a critical role in tumorigenesis and tumor progression, and anti-angiogenesis therapies have evinced promising antitumor effects in solid tumors. Chalcone skeleton has been regarded as a potential antitumor agent that also targets angiogenesis. In this study, we designed twenty-one non-fluoro-substituted chalcones (13-18, 24-27) and saturated chalcone derivatives (19-23, 28-33) as anti-angiogenic compounds. During the initial stage, these compounds were assessed for their anti-cancer activities against MCF-7 cancer cell lines according to the MTT assay. The compounds revealed satisfactory anti-proliferative capability. An ex vivo fertilized hens' egg-chorioallantoic membrane (HET-CAM) angiogenic study was conducted for the compounds to gauge their mortality and toxicity, which, in turn, revealed a potent anti-angiogenic effect. Eight compounds (16, 17, 21, 24, 26, 27, 29, and 31) significantly reduced densities of capillaries on CAM, whereas compounds 27 and 29 were the most effective anti-angiogenic agents, when compared with Suramin. Moreover, RT-qPCR analysis demonstrated that the anti-angiogenic activity was associated with the fold changes of VEGFR2. Molecular docking studies were conducted for compounds to investigate their mode of interaction within the binding site of VEGFR-2 kinases. This work provided a basis for further design, structural modification, and development of chalcone derivatives as new anti-angiogenic agents.Öğe Exploring enzyme inhibition profiles of novel halogenated chalcone derivatives on some metabolic enzymes: Synthesis, characterization and molecular modeling studies(Elsevier Sci Ltd, 2022) Anil, Derya Aktas; Polat, M. Fatih; Saglamtas, Ruya; Tarikogullari, Ayse H.; Alagoz, M. Abdullah; Gulcin, Ilhami; Algul, OztekinEnzyme inhibition is a very active area of research in drug design and development. Chalcone derivatives have a broad enzyme inhibitory activity and function as potential molecules in the development of new drugs. In this study, the synthesized novel halogenated chalcones with bromobenzyl and methoxyphenyl moieties were evaluated toward the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes and human erythrocyte carbonic anhydrase I (hCA I), and II (hCA II) isoenzymes. They showed highly potent inhibition ability toward AChE with Ki values of 1.83 +/- 0.21-11.19 +/- 0.96 nM and BChE with Ki values of 3.35 +/- 0.91-26.70 +/- 4.26 nM; hCA I with Ki values of 29.41 & PLUSMN; 3.14-57.63 & PLUSMN; 4.95 nM, and hCA II with Ki values of 24.00 & PLUSMN; 5.39-54.74 & PLUSMN; 1.65 nM. Among the tested enzyme inhibitions, compounds 14 and 13 were the most active compounds against AChE and BChE. Docking studies were performed to the most active compounds against AChE, BChE, hCA I and hCA II to propose a binding mode in the active site and molecular dynamics simulations were studied to check the molecular interactions and the stability of the ligands in the active site. The results may contribute to the development of new drugs particularly to treat some global disorders including Alzheimer's disease (AD), glaucoma, and diabetes.Öğe Investigation of Some Metabolic Enzyme Inhibition Properties of Novel Chalcone-Cu Complexes(Wiley-V C H Verlag Gmbh, 2024) Ebiri, Rustem; Turgut, Muhammet; Anil, Derya Aktas; Demir, Yeliz; Saglamtas, Ruya; Alagoz, M. Abdullah; Algul, OztekinFourteen novel Chalcone-Cu complexes were effectively synthesized in this work. The newly synthesized Chalcone-Cu complexes were assessed for their effects on human carbonic anhydrase isoenzymes I and II, acetylcholinesterase enzymes, and antioxidant activity. The intricate compounds exhibited Ki values ranging from 41.65-190.42 nM against hCA I, 15.79-259.07 nM against hCA II, and 14.36-175.73 nM against AChE enzymes. These complexes demonstrated potent inhibitory profiles against the specified metabolic enzymes, surpassing the inhibitory effects of acetazolamide (for hCA I and II) and tacrine (for AChE). The antioxidant properties of the compounds were assessed using DPPH and ABTS radical scavenging assays, revealing that the complexes had moderate to high efficacy in neutralizing free radicals. All complexes underwent molecular docking experiments. Compounds 14, 22, and 23 yielded the highest docking scores. Compound 14 demonstrated a docking score of -6.414 kcal/mol against hCAI, whereas compound 23 attained a docking score of -6.697 kcal/mol against hCA II. Compound 22 exhibited the most favorable docking score of -9.645 kcal/mol against AChE. The acquired results have the potential to help towards the development of new drugs containing Cu complex structures for the treatment of prevalent ailments such as glaucoma and Alzheimer's diseases. This study unveils the potential of Chalcone-Cu complexes as potent enzyme inhibitors (hCA I and II and AChE) with antioxidant properties. The structural insights, inhibitory profiles, and molecular docking results underscore their therapeutic potential for neurological disorders. The findings present a foundation for further exploration and drug development in the realm of Chalcone-Cu compounds. imageÖğe Organohalogen chalcones: design, synthesis, ADMET prediction, molecular dynamics study and inhibition effect on acetylcholinesterase and carbonic anhydrase(Springer, 2024) Aydin, Busra Ozturk; Anil, Derya Aktas; Demir, Yeliz; Alagoz, Mehmet AbdullahIn an effort to discover potential acetylcholinesterase (AChE) and carbonic anhydrase (CA) inhibitors, a novel series of organohalogen chalcone derivatives (12-20, 23-30) was synthesized, and their chemical structures were characterized by spectral analysis. They showed a highly potent inhibition effect on AChE and hCAs (Ki values range from 5.07 +/- 0.062 to 65.53 +/- 4.36 nM for AChE, 13.54 +/- 2.55 to 94.11 +/- 10.39 nM for hCA I, and 5.21 +/- 0.54 to 57.44 +/- 3.12 nM for hCA II). In addition, the chalcone derivatives with the highest inhibitor score docked into the active site of the indicated metabolic enzyme receptors, and their absorption, metabolism, and toxic properties were evaluated according to ADMET's estimation.Compounds 16 and 19 exhibited the highest inhibition score, emerged as lead compounds, and inspired the development of more potent compounds.