Yazar "Ferkhi, Mosbah" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A2BO4±? as New Materials for Electrocatalytic Detection of Paracetamol and Diclofenac Drugs(Springer, 2022) Zine, Amel; Ferkhi, Mosbah; Khaled, Ammar; Savan, Ebru KuyumcuIn this study, the electrochemical detection of drugs in the human body such as paracetamol and diclofenac was performed using the La2NiO4/carbon black and Pr2NiO4/carbon black electrocatalysts as sensor. The oxide materials were synthesized by the citrate method. The crystallinity of materials was determined by X-ray diffraction; the cell parameters and the crystallite size were calculated using the Debye-Scherrer formula. Morphology and grain size were determined by scanning electron microscope and the pore size was determined by the BET analysis. X-ray photoelectron spectroscopy analysis was used to evaluate the surface state of the synthesized oxide powders. Electrochemical characterization of the drugs on the electrocatalysts was carried out by cyclic voltammetry at different scanning speeds in a range of drug concentrations between 3 and 200 mu mol in a phosphate-buffered saline solution at pH 7. The square wave method was used to determine the detection limits. The synthesized nano-particle-based electrodes demonstrated excellent sensitivity in detecting drug/biomolecules (PCM and DIC) in biological fluids with the minimum detection limit 1.99 mu M and 2.32 mu M, respectively, at La2NiO4/carbon black electrode and 2.04 mu M and 2.37 mu M, respectively, at Pr2NiO4/carbon black electrode. The peak currents relative to the detection of the paracetamol and diclofenac drugs are respectively 800 and 1000 on La2NiO4/carbon black and 1000 and 500 mu A on Pr2NiO4/carbon black. This remarkable behavior enables us to propose these materials as alternative electrocatalysts that act as selective sensors for drug detection in the human body.Öğe Electrochemical biodetection of glucose using La0.6Sr0.4Co0.8Fe0.2O3 and La1,7Sr0,3CuO4 NanoParticles modified with black carbon deposited on glassy carbon electrode(Elsevier, 2023) Mekersi, Mouna; Ferkhi, Mosbah; Savan, Ebru KuyumcuNon-enzymatic developed biosensors, especially with noble nanoparticles received tremendous attention in the field of glucose molecule sensing. Herein low-cost, highly sensitive, and more effective nano-sized materials such as La1,7Sr0,3CuO4 and La0.6Sr0.4Co0.8Fe0.2O3 were synthesized by a simple citrate method, and modified with black carbon in purpose to use as electrodes for the simultaneous detection of glucose. The crystallite size, refinement, purity, shape, and morphology of nanomaterials were characterized using X-ray diffraction and Scanning Electron Microscopy techniques. Cyclic voltammetry, Differential Potential Voltammetry, Square Wave Voltammetry, and Electrochemical Impedance Spectroscopy techniques were used as investigative techniques. The modified electrodes showed excellent response and sensitivity for glucose molecule detection compared with previous literature, with a wide linear range from 0.1 M to 0.1 nM for La0.6Sr0.4Co0.8Fe0.2O3 and 0.1 M to 0.001 nM for La1,7Sr0,3CuO4, high sensitivities of 614.7 and 876.3 mu A.mM- 1.cm 2 and low detection limits of 0.972 nM and 0.0194 nM respectively. The performance of electrodes was checked by using real samples like synthetic urine and human blood. Both of the modified electrodes demonstrated satisfactory and reproducible results in real samples.Öğe Electrochemical simultaneous determination of nitrate ions in water using modified glassy carbon electrode based on La1.7Sr0.3CuO4 and La0.6Sr0.4Co0.8Fe0.2O3 nanomaterials and black carbon sensors(Springer Heidelberg, 2024) Mekersi, Mouna; Savan, Ebru Kuyumcu; Ferkhi, MosbahNanoparticle-based materials have played an important role in the development of new electrochemical sensors and received recently tremendous attention for the detection of toxic ions such as nitrate molecules (NO3- and NO2-). Here, we employ La1.7Sr0.3CuO4 (LSCu) and La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) low-cost, highly sensitive nanoparticles modified with black carbon as sensors for the detection of nitrate ions. The modified nanooxides were synthesized by a simple citrate method then prepared with black carbon powder and nafion solution as a sensing matrix on a glassy carbon electrode for the determination of nitrates ions in water using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy as electrochemical techniques. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for structural and morphological characterization. The calculated crystallite size d, using the Debye-Scherrer equation was found to be 325,193 nm for LSCu and 208,317 nm for LSCF by XRD technique. The grain sizes are, respectively, 47.80 nm and 65.05 nm which were extracted by SEM analysis. In this work, the modified sensors based on LSCu and LSCF demonstrate satisfactory response and sensitivities toward nitrate molecules compared with previous works. They characterized with very low detection limits of 0.0014 nM and 0.02 nM, high sensitivities of 58.8 and 57.3 mu A.mu M-1, respectively, and recorded a wide linear range from 1 M to 10(-12) M for LSCF and 4 M to 10(-13) M for LSCu. Both of the modified electrodes demonstrated excellent results in real river water sample with low detection limits of 3.1 nM for LSCu and 3.5 nM for LSCF and very good recoveries of 100.6% and 101.65%, respectively.