A2BO4±? as New Materials for Electrocatalytic Detection of Paracetamol and Diclofenac Drugs
Küçük Resim Yok
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this study, the electrochemical detection of drugs in the human body such as paracetamol and diclofenac was performed using the La2NiO4/carbon black and Pr2NiO4/carbon black electrocatalysts as sensor. The oxide materials were synthesized by the citrate method. The crystallinity of materials was determined by X-ray diffraction; the cell parameters and the crystallite size were calculated using the Debye-Scherrer formula. Morphology and grain size were determined by scanning electron microscope and the pore size was determined by the BET analysis. X-ray photoelectron spectroscopy analysis was used to evaluate the surface state of the synthesized oxide powders. Electrochemical characterization of the drugs on the electrocatalysts was carried out by cyclic voltammetry at different scanning speeds in a range of drug concentrations between 3 and 200 mu mol in a phosphate-buffered saline solution at pH 7. The square wave method was used to determine the detection limits. The synthesized nano-particle-based electrodes demonstrated excellent sensitivity in detecting drug/biomolecules (PCM and DIC) in biological fluids with the minimum detection limit 1.99 mu M and 2.32 mu M, respectively, at La2NiO4/carbon black electrode and 2.04 mu M and 2.37 mu M, respectively, at Pr2NiO4/carbon black electrode. The peak currents relative to the detection of the paracetamol and diclofenac drugs are respectively 800 and 1000 on La2NiO4/carbon black and 1000 and 500 mu A on Pr2NiO4/carbon black. This remarkable behavior enables us to propose these materials as alternative electrocatalysts that act as selective sensors for drug detection in the human body.
Açıklama
Anahtar Kelimeler
Sensors, Paracetamol and diclofenac drugs, Cyclic voltammetry, Limit detection, La2NiO4 and Pr2NiO4 electrocatalysts
Kaynak
Electrocatalysis
WoS Q Değeri
Q3
Scopus Q Değeri
Q3
Cilt
13
Sayı
5