Yazar "Merrill, Gary F." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Checkpoint deficient rad53 11 yeast cannot accumulate dNTPs in response to DNA damage(Biochem Biophys Res Commun., 2007) Koç, Ahmet; Merrill, Gary F.Deoxyribonucleotide pools are maintained at levels that support efficient and yet accurate DNA replication and repair. Rad53 is part of a protein kinase regulatory cascade that, conceptually, promotes dNTP accumulation in four ways: (1) it activates the transcription of ribonucleotide reductase subunits by inhibiting the Crt1 repressor; (2) it plays a role in relocalization of ribonucleotide reductase subunits RNR2 and RNR4 from nucleus to cytoplasm; (3) it antagonizes the action of Sml1, a protein that binds and inhibits ribonucleotide reductase; and (4) it blocks cell-cycle progression in response to DNA damage, thus preventing dNTP consumption through replication forks. Although several lines of evidence support the above modes of Rad53 action, an effect of a rad53 mutation on dNTP levels has not been directly demonstrated. In fact, in a previous study, a rad53-11 mutation did not result in lower dNTP levels in asynchronous cells or in synchronized cells that entered the S-phase in the presence of the RNR inhibitor hydroxyurea. These anomalies prompted us to investigate whether the rad53-11 mutation affected dNTP levels in cells exposed to a DNA-damaging dose of ethylmethyl sulfonate (EMS). Although dNTP levels increased by 2- to 3-fold in EMS treated wild-type cells, rad53-11 cells showed no such change. Thus, the results indicate that Rad53 checkpoint function is not required for dNTP pool maintenance in normally growing cells, but is required for dNTP pool expansion in cells exposed to DNA-damaging agents. 2006 Elsevier Inc. All rights reserved.Öğe Replication independent MCB gene induction and deoxyribonucleotide accumulation at G1 S in Saccharomyces cerevisiae(J Biol Chem, 2003) Koç, Ahmet; Wheeler, Linda J.; Mathews, Christopher K.; Merrill, Gary F.In Saccharomyces cerevisiae, many genes encoding enzymes involved in deoxyribonucleotide synthesis are expressed preferentially near the G1/S boundary of the cell cycle. The relationship between the induction of deoxyribonucleotide-synthesizing genes, deoxyribonucleoside triphosphate levels, and replication initiation was investigated using factor-synchronized wildtype yeast or dbf4 yeast that are temperature-sensitive for replication initiation. Neither the timing nor extent of gene induction was inhibited when factor-arrested dbf4 cells were released into medium containing the ribonucleotide reductase inhibitor hydroxyurea, which blocks replication fork progression, or were released at 37 °C, which blocks replication origin firing. Thus, the induction of deoxyribonucleotide-synthesizing genes at G1/S was fully independent of DNA chain elongation or initiation. Deoxyribonucleoside triphosphate levels increased severalfold at G1/S in wild-type cells and in dbf4 mutants incubated at the non-permissive temperature. Thus, deoxyribonucleoside triphosphate accumulation, like the induction of deoxyribonucleotide-synthesizing genes, was not dependent on replication initiation. Deoxyribonucleoside triphosphate accumulation at G1/S was suppressed in cells lacking Swi6, a transcription factor required for normal cell cycle regulation of deoxyribonucleotide-synthesizing genes. The results suggest that cells use gene induction at G1/S as a mechanism to pre-emptively, rather than reflexively, increase the synthesis of DNA precursors to meet the demand of the replication forks for deoxyribonucleotides.Öğe Thioredoxin is required for deoxyribonucleotide pool maintenance during S phase(J Biol Chem, 2006) Koç, Ahmet; Mathews, Christopher K.; Wheeler, Linda J.; Gross, Michael K.; Merrill, Gary F.Thioredoxin was initially identified by its ability to serve as an electron donor for ribonucleotide reductase in vitro. Whether it serves a similar function in vivo is unclear. In Saccharomyces cerevisiae, it was previously shown that trx1 trx2 mutants lacking the two genes for cytosolic thioredoxin have a slower growth rate because of a longer S phase, but the basis for S phase elongation was not identified. The hypothesis that S phase protraction was due to inefficient dNTP synthesis was investigated by measuring dNTP levels in asynchronous and synchronized wild-type and trx1 trx2 yeast. In contrast to wild-type cells, trx1 trx2 cells were unable to accumulate or maintain high levels of dNTPs when -factor- or cdc15-arrested cells were allowed to reenter the cell cycle. At 80 min after release, when the fraction of cells in S phase was maximal, the dNTP pools in trx1 trx2 cells were 60% that of wild-type cells. The data suggest that, in the absence of thioredoxin, cells cannot support the high rate of dNTP synthesis required for efficient DNA synthesis during S phase. The results constitute in vivo evidence for thioredoxin being a physiologically relevant electron donor for ribonucleotide reductase during DNA precursor synthesis.