Yazar "Ozcelik, Azime Berna" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Inhibition of Cholinesterases by Benzothiazolone Derivatives(Mdpi, 2022) Alagoz, Mehmet Abdullah; Kim, Seong-Min; Oh, Jong Min; Arslan, Gulnur; Ozdemir, Zeynep; Sari, Suat; Ozcelik, Azime BernaThirteen benzothiazolone derivatives (M1-M13) were synthesized and evaluated for their inhibitory activity against cholinesterases (ChEs) and monoamine oxidases (MAOs). All the compounds inhibited ChEs more effectively than MAOs. In addition, most of the compounds showed higher inhibitory activities against butyrylcholinesterase (BChE) than acetylcholinesterase (AChE). Compound M13 most potently inhibited BChE with an IC50 value of 1.21 mu M, followed by M2 (IC50 = 1.38 mu M). Compound M2 had a higher selectivity index (SI) value for BChE over AChE (28.99) than M13 (4.16). The 6-methoxy indole group of M13 was expected to have a greater effect on BChE inhibitory activity than the other groups. Kinetics and reversibility tests showed that M13 was a reversible noncompetitive BChE inhibitor with a K-i value of 1.14 +/- 0.21 mu M. In a docking simulation, M13 is predicted to form a hydrogen bond with the backbone carbonyl group of Ser287 of BChE through its methoxy indole moiety and pi-pi interactions between its benzothiazolone group and the side chain of Trp82 with the five-membered pyrrole ring and with the six-membered benzene ring. From these results, it is suggested that M13 is a BChE inhibitor and a potential candidate agent for the treatment of Alzheimer's disease.Öğe Inhibition of Monoamine Oxidases by Pyridazinobenzylpiperidine Derivatives(Mdpi, 2024) Oh, Jong Min; Zenni, Yaren Nur; Ozdemir, Zeynep; Kumar, Sunil; Kilic, Semanur; Akdag, Mevlut; Ozcelik, Azime BernaMonoamine oxidase inhibitors (MAOIs) have been crucial in the search for anti-neurodegenerative medications and continued to be a vital source of molecular and mechanistic diversity. Therefore, the search for selective MAOIs is one of the main areas of current drug development. To increase the effectiveness and safety of treating Parkinson's disease, new scaffolds for reversible MAO-B inhibitors are being developed. A total of 24 pyridazinobenzylpiperidine derivatives were synthesized and evaluated for MAO. Most of the compounds showed a higher inhibition of MAO-B than of MAO-A. Compound S5 most potently inhibited MAO-B with an IC50 value of 0.203 mu M, followed by S16 (IC50 = 0.979 mu M). In contrast, all compounds showed weak MAO-A inhibition. Among them, S15 most potently inhibited MAO-A with an IC50 value of 3.691 mu M, followed by S5 (IC50 = 3.857 mu M). Compound S5 had the highest selectivity index (SI) value of 19.04 for MAO-B compared with MAO-A. Compound S5 (3-Cl) showed greater MAO-B inhibition than the other derivatives with substituents of -Cl > -OCH3 > -F > -CN > -CH3 > -Br at the 3-position. However, the 2- and 4-position showed low MAO-B inhibition, except S16 (2-CN). In addition, compounds containing two or more substituents exhibited low MAO-B inhibition. In the kinetic study, the K-i values of S5 and S16 for MAO-B were 0.155 +/- 0.050 and 0.721 +/- 0.074 mu M, respectively, with competitive reversible-type inhibition. Additionally, in the PAMPA, both lead compounds demonstrated blood-brain barrier penetration. Furthermore, stability was demonstrated by the 2V5Z-S5 complex by pi-pi stacking with Tyr398 and Tyr326. These results suggest that S5 and S16 are potent, reversible, selective MAO-B inhibitors that can be used as potential agents for the treatment of neurological disorders.Öğe A new series of pyridazinone derivatives as cholinesterases inhibitors: Synthesis, in vitro activity and molecular modeling studies(Springer Heidelberg, 2019) Ozcelik, Azime Berna; Ozdemir, Zeynep; Sari, Suat; Utku, Semra; Uysal, MehtapBackground: The pyridazinone nucleus has been incorporated into a wide variety of therapeutically interesting molecules to transform them into better drugs. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are known to be serine hydrolase enzymes responsible for the hydrolysis of acetylcholine (ACh). Inhibition of cholinesterases is an effective method to curb Alzheimer's disease. Here, we prepared 12 new 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(nonsubstituted/4-substituted benzenesulfonohydrazide) derivatives and evaluated their inhibitory effects on AChE/BChE in pursuit of potent dual inhibitors for Alzheirmer's Disease. We also tried to get insights into binding interactions of the synthesized compounds in the active site of both enzymes by using molecular docking approach. Method: We obtained our compounds by the reaction of various substituted/nonsubstituted benzenesulfonic acid derivatives with 6-substitutedphenyl-3(2H)-pyridazinone-2-yl acetohydrazide and determined their anticholinesterase activities according to the Ellman's method. Molecular docking studies were done using Glide and the results were evaluated on Maestro (Schrodinger, LLC, New York, NY, 2019). Results: The title compounds showed moderate inhibition at 100 mg/ml against both enzymes, yet with better activity against BChE. Compound VI2a emerged as a dual inhibitor with 25.02% and 51.70% inhibition against AChE and BChE, respectively. Conclusion: This study supports that novel pyridazinone derivates may be used for the development of new BChE inhibitory agents. It was less potent than the reference drugs, yet promising for further modifications as a lead. The ability of the compounds to adopt energetically more favourable conformations and to engage in more key interactions in the ECBChE active gorge explains their better activity profile against ECBChE. (C) 2019 Maj Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.Öğe A Series of New Hydrazone Derivatives: Synthesis, Molecular Docking and Anticholinesterase Activity Studies(Bentham Science Publ Ltd, 2020) Bozbey, Irem; Ozdemir, Zeynep; Uslu, Harun; Ozcelik, Azime Berna; Senol, Fatma Sezer; Orhan, Ilkay Erdogan; Uysal, MchtapBackground: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are known to be serine hydrolase enzymes responsible for the hydrolysis of acetylcholine (ACh), which is a significant neurotransmitter for regulation of cognition in animals. Inhibition of cholinesterases is an effective method to curb Alzheimer's disease, a progressive and fatal neurological disorder. Objective: In this study, 30 new hydrazone derivatives were synthesized. Then we evaluated their anticholinesterase activity of compounds. We also tried to get insights into binding interactions of the synthesized compounds in the active site of both enzymes by using molecular docking approach. Methods: The compounds were synthesized by the reaction of various substituted/nonsubstituted benzaldehydes with 6-(substitute/nonsubstituephenyl)-3(2H)-pyridazinone-2-yl propiyohydrazide. Anticholinesterase activity of the compounds was determined using Ellman's method. Molecular docking studies were done by using the ADT package version 1.5.6rc3 and showed by Maestro. RMSD values were obtained using Lamarckian Genetic Algorithm and scoring function of AutoDock 4.2 release 4.2.5.1 software. Results: The activities of the compounds were compared with galantamine as cholinesterase enzyme inhibitor, where some of the compounds showed higher BChE inhibitory activity than galantamine. Compound F1(11) was shown to be the best BChE inhibitor effective in 50 mu M dose, providing 89.43% inhibition of BChE (IC50=4.27 +/- 0.36 mu M). Conclusion: This study supports that novel hydrazone derivates may be used for the development of new BChE inhibitory agents.