A new series of pyridazinone derivatives as cholinesterases inhibitors: Synthesis, in vitro activity and molecular modeling studies
Küçük Resim Yok
Tarih
2019
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Heidelberg
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Background: The pyridazinone nucleus has been incorporated into a wide variety of therapeutically interesting molecules to transform them into better drugs. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are known to be serine hydrolase enzymes responsible for the hydrolysis of acetylcholine (ACh). Inhibition of cholinesterases is an effective method to curb Alzheimer's disease. Here, we prepared 12 new 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(nonsubstituted/4-substituted benzenesulfonohydrazide) derivatives and evaluated their inhibitory effects on AChE/BChE in pursuit of potent dual inhibitors for Alzheirmer's Disease. We also tried to get insights into binding interactions of the synthesized compounds in the active site of both enzymes by using molecular docking approach. Method: We obtained our compounds by the reaction of various substituted/nonsubstituted benzenesulfonic acid derivatives with 6-substitutedphenyl-3(2H)-pyridazinone-2-yl acetohydrazide and determined their anticholinesterase activities according to the Ellman's method. Molecular docking studies were done using Glide and the results were evaluated on Maestro (Schrodinger, LLC, New York, NY, 2019). Results: The title compounds showed moderate inhibition at 100 mg/ml against both enzymes, yet with better activity against BChE. Compound VI2a emerged as a dual inhibitor with 25.02% and 51.70% inhibition against AChE and BChE, respectively. Conclusion: This study supports that novel pyridazinone derivates may be used for the development of new BChE inhibitory agents. It was less potent than the reference drugs, yet promising for further modifications as a lead. The ability of the compounds to adopt energetically more favourable conformations and to engage in more key interactions in the ECBChE active gorge explains their better activity profile against ECBChE. (C) 2019 Maj Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Açıklama
Anahtar Kelimeler
AChE inhibitor, BChE inhibitor, 3(2H)-Pyridazinone, Hydrazone, Molecular modelling
Kaynak
Pharmacological Reports
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
71
Sayı
6