Yazar "Turabi, A. S." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The effect of Sn content on mechanical, magnetization and shape memory behavior in NiMnSn alloys(Elsevier Science Sa, 2016) Aydogdu, Y.; Turabi, A. S.; Kok, M.; Aydogdu, A.; Yakinci, Z. D.; Aksan, M. A.; Yakinci, M. E.The effects of the composition alteration on the magnetization and shape memory behavior of Ni50Mn40-xSn10+x (x = 0, 1, 2, 3) alloys were systematically investigated by thermal, magnetic and mechanical experiments. Phase transformation from ferromagnetic austenite to weakly magnetic martensite was observed during thermal cycling under magnetic field and transformation temperatures were decreased with increasing Sn (or decreasing Mn). Moreover, the saturation magnetization of martensite increased with Sn content. Ni50Mn40Sn10 showed the recoverable strain of 2.1% during thermal cycling under 300 MPa and the reversible superelastic strain of 2% at 190 degrees C. Mechanical experiments exhibited that the largest compressive deformation of about 7% at 650 MPa occurred in Ni50Mn39Sn11 while Ni50Mn40Sn10 had fractured at 4% and 390 MPa at room temperature. (C) 2016 Elsevier B.V. All rights reserved.Öğe The effects of boron addition on the magnetic and mechanical properties of NiMnSn shape memory alloys(Springer, 2016) Aydogdu, Y.; Turabi, A. S.; Aydogdu, A.; Kok, M.; Yakinci, Z. D.; Karaca, H. E.The effects of boron addition on the microstructure, magnetic, mechanical, and shape memory properties of Ni50Mn40-xSn10Bx (at.%) (x = 1, 2, 3, 4, 6, 8) polycrystalline alloys were systematically investigated. It was revealed that transformation temperatures, magnetic behavior, mechanical, and shape memory properties can be tailored by B content. Transformation temperatures were decreased while saturation magnetization was increased with the addition of boron. In addition to magnetic behavior, ferromagnetic austenite transforms to weakly magnetic martensite, and then, martensite becomes ferromagnetic during cooling. The low amount of B addition (up to 4 %) to NiMnSn creates the second phase which provides higher strength and ductility. However, the high volume fraction of the second phase reduces the shape recovery because the phase transformation does not occur in the second phase. Brittleness takes place when the B amount is more than 6 % in NiMnSnB alloys. The amount of boron content in the NiMnSnB alloys plays a significant role to modify the magnetic, mechanical, and shape memory properties.Öğe The effects of substituting B for Cu on the magnetic and shape memory properties of CuAlMnB alloys(Springer Heidelberg, 2016) Aydogdu, Y.; Turabi, A. S.; Aydogdu, A.; Vance, E. D.; Kok, M.; Kirat, G.; Karaca, H. E.The effects of B addition on the magnetization, mechanical and shape memory properties in Cu70-xAl24-Mn6Bx at.% (x = 0, 1, 2, 3, 4) alloys have been investigated. The ductility was decreased, while the strength was improved with B addition. Transformation temperatures were increased with B content due to increased e/a ratio. Martensite start temperature of B-free CuAlMn was found to be 37.3 degrees C and increased to 218.8 degrees C with 4 % B addition. B-free CuAlMn exhibited shape memory effect with a recoverable strain of 2.25 % under 200 MPa and a perfect superelasticity with a recoverable strain of 2.5 % at 163 degrees C. B addition degraded the shape memory properties and eventually resulted in the lack of recoverable strain. In addition, saturation magnetization was increased with B content. Moreover, the addition of B slightly decreased the ductility of the alloy. It was found that the magnetization, mechanical and shape memory properties CuAlMn alloys can be tailored by quaternary alloying with B.