Yazar "Uysal, Erdal" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Evaluation of the effects of adipose-derived mesenchymal stem cells on intraperitoneal adhesions(Aves, buyukdere cad 105-9, mecıdıyekoy, sıslı, ıstanbul 34394, turkey, 2018) Uysal, Erdal; Dokur, Mehmet; Kirdak, Turkay; Kurt, Akif; Karadag, MehmetObjectives: The goal was to examine the efficiency of local implementation of adipose-derived mesenchymal stem cells, which have an anti-inflammatory effect, in preventing the intra-abdominal adhesions in rats. Material and Methods: Twenty-one Wistar albino rats were randomly divided into 3 groups, 7 rats in each: Group 1 was defined as the control group, Group 2 as the sham group, and Group 3 as the adipose-derived mesenchymal stem cell group. A 6 cm mid-abdomen incision in the all the rats was performed. The cecum serosa and sub-serosa were injured by rubbing with a gauze. No agent was applied intraperitoneally for the rats in Group 1; 1.5 mL saline and 2x106/ kg allojenic adipose-derived mesenchymal stem cells in the 1.5 mL saline were injected into peritoneum of rats in Groups 2 and 3, respectively. Laparotomy was performed on the 14th day. Adhesion scores, histopathological examination, E-cadherin expression, and the tissue hydroxyproline level were evaluated. Results: The general adhesion score and collagen deposition in Group 3 were found to be significantly higher than in Groups 1 and 2 (p=0.003 and p=0.009, respectively). In the inflammatory cell comparison, a significant decrease was found in Group 3 in proportion to Groups 1 and 2 (p=0.001, p=0.005, respectively). The E-cadherin levels were found to be higher in Group 3 (p=0.003). Conclusion: Severe adhesion was observed in the adipose-derived mesenchymal stem cells group. Collagen intensity and E-Cadherin expression also increased in the adipose-derived mesenchymal stem cells group. The anti-inflammatory effect was also seen in the adipose-derived mesenchymal stem cells group.Öğe Evaluation of the effects of adipose-derived mesenchymal stem cells on intraperitoneal adhesions(Aves, 2018) Uysal, Erdal; Dokur, Mehmet; Kirdak, Turkay; Kurt, Akif; Karadag, MehmetObjectives: The goal was to examine the efficiency of local implementation of adipose-derived mesenchymal stem cells, which have an anti-inflammatory effect, in preventing the intra-abdominal adhesions in rats. Material and Methods: Twenty-one Wistar albino rats were randomly divided into 3 groups, 7 rats in each: Group 1 was defined as the control group, Group 2 as the sham group, and Group 3 as the adipose-derived mesenchymal stem cell group. A 6 cm mid-abdomen incision in the all the rats was performed. The cecum serosa and sub-serosa were injured by rubbing with a gauze. No agent was applied intraperitoneally for the rats in Group 1; 1.5 mL saline and 2x106/ kg allojenic adipose-derived mesenchymal stem cells in the 1.5 mL saline were injected into peritoneum of rats in Groups 2 and 3, respectively. Laparotomy was performed on the 14th day. Adhesion scores, histopathological examination, E-cadherin expression, and the tissue hydroxyproline level were evaluated. Results: The general adhesion score and collagen deposition in Group 3 were found to be significantly higher than in Groups 1 and 2 (p=0.003 and p=0.009, respectively). In the inflammatory cell comparison, a significant decrease was found in Group 3 in proportion to Groups 1 and 2 (p=0.001, p=0.005, respectively). The E-cadherin levels were found to be higher in Group 3 (p=0.003). Conclusion: Severe adhesion was observed in the adipose-derived mesenchymal stem cells group. Collagen intensity and E-Cadherin expression also increased in the adipose-derived mesenchymal stem cells group. The anti-inflammatory effect was also seen in the adipose-derived mesenchymal stem cells group.Öğe Investigation of the Effect of Milrinone on Renal Damage in an Experimental Non-Heart Beating Donor Model(Taylor & Francis Inc, 2018) Uysal, Erdal; Dokur, Mehmet; Altinay, Serdar; Saygili, Eyup Ilker; Batcioglu, Kadir; Ceylan, Mehmet S.; Kazimoglu, HatemPurpose: In our study, it was aimed to investigate the preventive effect of milrinone on renal damage in experimental controlled non-heart-beating donors (NHBDs) model. Materials and Methods: Sixteen rats randomly divided into 2 groups, 8 rats in each were used. Group 1 was control, group 2 was milrinone group. Group 1 rats received 1.25ml 0.09% NaCl intraperitoneally equivalent to the milrinone diluted volume. Group 2 rats were administered intraperitoneally with 0.5mg/kg of milrinone 2hours before cardiac arrest. After the cardiac arrest, left nephrectomy was applied to the rats. Malondialdehyde, superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) activities, Caspase-3 (apoptotic index) and histopathological evaluation were performed in the tissues. Results: In the milrinone group, the total injury score was significantly lower relative to the control group (p = 0.001). Caspase-3 staining was moderately strong in the control group but weaker in the milrinone group. Apoptotic index was significantly lower in the milrinone group compared to the control group (p = 0.001). In comparison between groups, SOD and GPx in the milrinone group was significantly higher than the control group (p = 0.008, p = 0.006). Conclusions: Milrinone has been shown to be effective in the prevention of tissue damage due to oxidative stress and inflammatory process in the renal of warm ischemia in the experimental NHBDs model and in protecting the renal. Milrinone increases antioxidant activity while reducing apoptosis. Systemic administration of milrinone prior to cardiac arrest may be beneficial. Administration of milrinone to the recipient in the perioperative period may contribute to donor function.Öğe Targeting the PANoptosome with 3,4-Methylenedioxy-?-Nitrostyrene, Reduces PANoptosis and Protects the Kidney against Renal Ischemia-Reperfusion Injury(Taylor & Francis Inc, 2022) Uysal, Erdal; Dokur, Mehmet; Kucukdurmaz, Faruk; Altinay, Serdar; Polat, Sait; Batcioglu, Kadir; Sezgin, EfeObjectives: The objectives of this study were a) to investigate the effect of targeting the PANoptosome with 3,4-methylenedioxy-beta-nitrostyrene (MNS) on PANoptosis in the Renal ischemia-reperfussion (RIR) model b) to investigate the kidney protective effect of MNS toward RIR injury. Methods: Thirty-two rats were divided into four groups randomly. The groups were assigned as Control, Sham, DMSO (dimethyl sulfoxide) and MNS groups. The rats in the MNS group were intraperitoneally given 20 mg/kg of MNS 30 minutes before reperfusion. 2% DMSO solvent that dissolves MNS were given to the rats in DMSO group. Left nephrectomy was performed on the rats under anesthesia at the 6th hour after reperfusion. Glutathione peroxidase (GPx), malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD) and 8-Okso-2'-deoksiguanozin (8-OHdG) levels were measured. Immunohistochemical analysis, electron microscopic and histological examinations were carried out in the tissues. Results: Total tubular injury score was lower in the MNS group (p < 0.001). Caspase-3, Gasdermin D and MLK (Mixed Lineage Kinase Domain Like Pseudokinase) expressions were considerably decreased in the MNS group (p < 0.001). Apoptotic index (AI) was found to be low in the MNS group (p < 0.001). CAT and SOD levels were higher in the MNS Group (p = 0.006, p = 0.0004, respectively). GPx, MDA, and 8-OH-dG levels were similar (p > 0.05) in all groups. MNS considerably improved the tissue structure, based on the electron microscopic analysis. Conclusions: Our results suggested that MNS administrated before the reperfusion reduces pyroptosis, apoptosis and necroptosis. These findings suggest that MNS significantly protects the kidney against RIR injury by reducing PANoptosis as a result of specific inhibition of Nod-like receptor pyrin domain-containing 3 (NLRP 3), one of the PANoptosome proteins.