Use of hybrid intelligent computing in mineral resources evaluation

dc.authoridTutmez, Bulent/0000-0002-2618-3285
dc.authorwosidTutmez, Bulent/ABG-8630-2020
dc.contributor.authorTutmez, B.
dc.date.accessioned2024-08-04T20:31:15Z
dc.date.available2024-08-04T20:31:15Z
dc.date.issued2009
dc.departmentİnönü Üniversitesien_US
dc.description.abstractMineral resources are a formal quantification of naturally occurring materials. Estimation of resource parameters such as grade and thickness may be carried out using different methodologies. In this paper, a soft methodology, which is artificial neural network (ANN) based fuzzy modelling is presented for grade estimation and its stages are demonstrated. The neuro-fuzzy method uses preliminary clustering and finally estimates the ore grades based on radial basis neural network and interpolation. Two case studies designed for both simulated and real data sets indicate that the approach is relatively accurate and flexible. In addition, the method is suitable for modelling via limited number of data. The results and performance comparisons with conventional methods show that the computing method is efficient. (C) 2009 Elsevier B.V. All rights reserved.en_US
dc.identifier.doi10.1016/j.asoc.2009.02.001
dc.identifier.endpage1028en_US
dc.identifier.issn1568-4946
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-67349199582en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage1023en_US
dc.identifier.urihttps://doi.org/10.1016/j.asoc.2009.02.001
dc.identifier.urihttps://hdl.handle.net/11616/94818
dc.identifier.volume9en_US
dc.identifier.wosWOS:000265909000019en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Science Bven_US
dc.relation.ispartofApplied Soft Computingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHybrid modellingen_US
dc.subjectFuzzy-neural networken_US
dc.subjectMineral resourceen_US
dc.subjectGrade estimationen_US
dc.titleUse of hybrid intelligent computing in mineral resources evaluationen_US
dc.typeArticleen_US

Dosyalar