N-heterocyclic carbene Pd(II) complex supported on Fe3O4@SiO2: Highly active, reusable and magnetically separable catalyst for Suzuki-Miyaura cross-coupling reactions in aqueous media

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Science Sa

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

A new type magnetic nano Fe3O4@SiO2@NHC@Pd-MNPs heterogeneous catalyst was fabricated and characterized by Fourier Transform Infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Energy Disperse X-ray analysis (EDX), Thermogravimetric Analysis (TGA), Differential Thermal Analysis (DTA), and Scanning Electron Microscopy (SEM). The loading amount of Palladium (Pd) to magnetic nano Fe3O4@SiO2@NHC@Pd-MNPs was measured by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) analysis. The catalytic activity of magnetic nano Fe3O4@SiO2@NHC@Pd-MNPs heterogeneous catalyst was examined on Suzuki-Miyaura cross-coupling reactions of aryl halides with different substituted arylboronic acid derivatives. All coupling reactions yielded excellent results and high TOF (up to 76528 h(-1)) in the presence of 2 mg of Fe3O4@SiO2@NHC@Pd-MNPs catalyst (0.0197 mmolg(-1), 0.00394 mmol%Pd) at 80 degrees C in 2-propanol/H2O (1:2). In addition, the magnetic nano Fe3O4@SiO2@NHC@Pd-MNPs catalyst was easily recovered by using an external Nd-magnet and reused for the Suzuki cross-coupling reactions. The catalyst showed strong structural and chemical stability and was reused six times without losing its catalytic activity substantially. (C) 2021 Elsevier B.V. All rights reserved.

Açıklama

Anahtar Kelimeler

Magnetic palladium catalyst, Pd(II)-N-heterocyclic carbene complex, Suzuki-Miyaura reaction, Green chemistry, Magnetite

Kaynak

Journal of Organometallic Chemistry

WoS Q Değeri

Q2

Scopus Q Değeri

Q3

Cilt

943

Sayı

Künye