Ruşeym yağının tereyağı yayıkaltı suyu bileşenleri ile enkapsülasyonu
Küçük Resim Yok
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
İnönü Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu çalışmada buğday ruşeym yağının (WGO) oleik (%17.88), linoleik (%55.14) ve linolenik (%7.03) asitlerce zengin olması nedeniyle mikrokapsüle edilerek oksidatif stabilitesinin arttırılması amaçlanmıştır. Mikroenkapsülasyonda kabuk materyal olarak endüstriyel tereyağı üretiminden atık olarak ortaya çıkan ve püskürtülerek kurutulan yayıkaltı suyu (BM) kullanılmıştır. Farklı WGO:BM oranlarının, yüksek basınç homojenizatörden (YBH) geçirme sayısının (1-5) ve emülsiyonda kullanılan toplam katı madde (%10-40) miktarının enkapsülasyon etkinliğine etkileri baz alınmak suretiyle en uygun üretim koşulları saptanmıştır. WGO örnekleri hızlandırılmış oksidasyon koşullarında (60°C, 24 gün) tutulmak suretiyle mikroenkapsülasyonun oksidatif stabilite (peroksit, p-anisidin sayıları) ve bileşim (tokoferol, fitosterol ve karotenoitler) üzerine etkileri belirlenmiştir. Optimum koşullarda (WGO:BM oranı 1:2 ve YBH'den geçirme sayısı: 3 ve toplam katı madde miktarı %40) üretilen mikrokapsüllerin enkapsülasyon etkinliği, zeta potansiyeli ve emülsiyon parçacık büyüklüğü sırasıyla %94.11, -30.3±5.6 mV ve 780 nm olarak belirlendi. Hızlandırılmış oksidasyon koşullarında WGO ve mikroenkapsüle WGO'nun 24. gün sonundaki peroksit sayıları sırasıyla 185.36 ve 87.53 meqO_2/kg iken, p-anisidin sayıları sırasıyla 269.03 ve 165.40 olarak belirlendi. Oksidasyon süresince mikroenkapsüle WGO'nun tokoferol, fitosterol ve karotenoit miktarlarının genellikle mikroenkapsüllenmemiş WGO'nunkinden yüksek olduğu saptandı (P<0.05). Elde edilen tüm bulgular mikroenkapsülasyon yönteminin WGO'yu dış etkenlerden koruduğunu ve kabuk materyal olarak BM'nin iyi bir alternatif olduğunu gösterdi.
I In this study, it was aimed to increase the oxidative stability of wheat germ oil (WGO) by microencapsulation because it is rich in oleic (17.88%), linoleic (55.14%) and linolenic (7.03%) acids. Buttermilk (BM), which is a waste from industrial butter production and dried by spraying, was used as the crust material in microencapsulation. Optimal production conditions were determined based on the effects of different WGO:BM ratios, the number of high pressure homogenization (HPH) passes (1-5) and the total amount of solids (10-40%) used in the emulsion which were reflected encapsulation efficiency (EE). The effects of microencapsulation on oxidative stability (peroxide, p-anisidine numbers) and composition (tocopherol, phytosterol and carotenoids) were determined by keeping WGO samples under accelerated oxidation conditions (60°C, 24 days). The EE, zeta potential and emulsion particle size of the microcapsules produced under optimum conditions (WGO:BM ratio=1:2, HPH cycle number=3 and total solids ratio=40%) were determined has 94.11%, -29.8±4.25 mV and 1341 nm, respectively. In WGO composition, linoleic acid that low oxidative stability was found to be major fatty acid (55.14%). In accelerated oxidation conditions, peroxide values of WGO and microencapsulated WGO were determined as 185.36 and 87.53 meqO_2/kg at the end of the 24th day, while p-anisidine values were as 269.03 and 165.40, respectively. During oxidation, the tocopherol, phytosterol and carotenoid amounts of microencapsulated WGO were generally higher than those of bulk WGO (P<0.05). All the findings showed that the microencapsulation protects WGO from external factors and BM is a good alternative as a wall material.
I In this study, it was aimed to increase the oxidative stability of wheat germ oil (WGO) by microencapsulation because it is rich in oleic (17.88%), linoleic (55.14%) and linolenic (7.03%) acids. Buttermilk (BM), which is a waste from industrial butter production and dried by spraying, was used as the crust material in microencapsulation. Optimal production conditions were determined based on the effects of different WGO:BM ratios, the number of high pressure homogenization (HPH) passes (1-5) and the total amount of solids (10-40%) used in the emulsion which were reflected encapsulation efficiency (EE). The effects of microencapsulation on oxidative stability (peroxide, p-anisidine numbers) and composition (tocopherol, phytosterol and carotenoids) were determined by keeping WGO samples under accelerated oxidation conditions (60°C, 24 days). The EE, zeta potential and emulsion particle size of the microcapsules produced under optimum conditions (WGO:BM ratio=1:2, HPH cycle number=3 and total solids ratio=40%) were determined has 94.11%, -29.8±4.25 mV and 1341 nm, respectively. In WGO composition, linoleic acid that low oxidative stability was found to be major fatty acid (55.14%). In accelerated oxidation conditions, peroxide values of WGO and microencapsulated WGO were determined as 185.36 and 87.53 meqO_2/kg at the end of the 24th day, while p-anisidine values were as 269.03 and 165.40, respectively. During oxidation, the tocopherol, phytosterol and carotenoid amounts of microencapsulated WGO were generally higher than those of bulk WGO (P<0.05). All the findings showed that the microencapsulation protects WGO from external factors and BM is a good alternative as a wall material.
Açıklama
Anahtar Kelimeler
Gıda Mühendisliği, Food Engineering