Numerical approximation to the MEW equation for the single solitary wave and different types of interactions of the solitary waves

dc.authoridYAĞMURLU, Nuri Murat/0000-0003-1593-0254
dc.authoridUÇAR, Yusuf/0000-0003-1469-5002
dc.authoridBashan, Ali/0000-0001-8500-493X
dc.authoridEsen, Alaattin/0000-0002-7927-5941
dc.authorwosidYAĞMURLU, Nuri Murat/AAB-8514-2020
dc.authorwosidUÇAR, Yusuf/ABG-8562-2020
dc.authorwosidBashan, Ali/R-6644-2018
dc.authorwosidEsen, Alaattin/F-2415-2016
dc.contributor.authorBashan, Ali
dc.contributor.authorUcar, Yusuf
dc.contributor.authorYagmurlu, N. Murat
dc.contributor.authorEsen, Alaattin
dc.date.accessioned2024-08-04T20:53:04Z
dc.date.available2024-08-04T20:53:04Z
dc.date.issued2022
dc.departmentİnönü Üniversitesien_US
dc.description.abstractThe main motivation of the current study is to find out better approximate solutions of the modified equal width wave (MEW) equation. In order to achieve this aim, the power of two numerical methods are combined and an extended literature survey has been carried out. Quartic B-spline base functions have been utilized since the first-order and second-order weighting coefficients that are needed for space discretization are obtained directly. As test problems, twelve different applications of single solitary wave and four different applications of the interaction between the two solitary waves are solved successfully. All of the approximate solutions have been compared to nearly fifty various earlier applications existing in the literature. Also, the rate of the convergence is given with error norms. Comparisons show the fact that the current method obtains improved results than most of the common earlier methods.en_US
dc.identifier.doi10.1080/10236198.2022.2132154
dc.identifier.endpage1213en_US
dc.identifier.issn1023-6198
dc.identifier.issn1563-5120
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-85140124430en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage1193en_US
dc.identifier.urihttps://doi.org/10.1080/10236198.2022.2132154
dc.identifier.urihttps://hdl.handle.net/11616/100950
dc.identifier.volume28en_US
dc.identifier.wosWOS:000869532700001en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofJournal of Difference Equations and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFinite difference methoden_US
dc.subjectdifferential quadrature methoden_US
dc.subjectsolitary waveen_US
dc.subjectmodified equal width equationen_US
dc.subjectconvergenceen_US
dc.titleNumerical approximation to the MEW equation for the single solitary wave and different types of interactions of the solitary wavesen_US
dc.typeArticleen_US

Dosyalar