Tuning surface texture of electrospun polycaprolactone fibers: Effects of solvent systems and relative humidity
Küçük Resim Yok
Tarih
2020
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Cambridge Univ Press
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this study, the surface morphology of electrospun polycaprolactone (PCL) fibers was investigated. PCL was dissolved in various solvent/nonsolvent systems (acetone/dimethylformamide (DMF), tetrahydrofuran (THF)/DMF, dichloromethane (DCM)/DMF, chloroform (CF)/DMF, acetone/dimethyl sulfoxide (DMSO), THF/DMSO, DCM/DMSO, CF/DMSO) at a fixed ratio of 80/20 v/v. PCL solutions from these solvent systems were electrospun under varying high relative humidity (60-90%), and also room humidity. Characterization of fibers was evaluated by a scanning electron microscope, an atomic force microscope, water contact angle measurements, the Brunauer-Emmett-Teller method, and a strain-stress test. Results revealed that the surface texture of individual fibers changed with the presence of different types of pores and surface roughness depending on both humidity and solvent/nonsolvent properties. Miscibility with water was another factor to be taken into account for understanding mechanisms that contributed to the formation of surface defects. Fibrous materials having such a surface architecture, especially the porous ones, are potential candidates for various applications such as tissue engineering, drug delivery, catalysis, and filtration.
Açıklama
Anahtar Kelimeler
surface topography, porous PCL fibers, electrospinning, humidity
Kaynak
Journal of Materials Research
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
35
Sayı
3